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ABSTRACT

MATHEMATICAL MODELING OF DISPERSION IN STRATIFIED WATERS

by

GEQORGE C. CHRISTODOULOU
JEROME J. CONNOR
and

BRYAN R. PEARCE

A numerical model is developed for the quantitative descriptiom
of the dispersion process in a two-layer system which represents an
approximation for a natural water body during the summer season,
when a distinct thermocline usually exists. The model can handle
any passive constituent, dissolved or suspended, possessing (small)
vertical mobility and arbitrary decay characteristics, in a domain
of irregular geometry and bottom topography. The formulatiom is
based on the convection-diffusion equation, vertically integrated
between the layer boundaries. Layer velocities and thicknesses
are assumed to be obtained from a separate hydrodynamic model. The
processes of entrainment and mixing through the density interface
are presented with a unified view and general quantitative expressiocns
in terms of the stability of the system and the mean flow character-
istics are proposed. The modeling of horizomtal dispersion mechan-
isms and the relation of eddy diffusivity to the characteristic grid
size and of shear dispersion to the local velocity profile are
discussed.

The finite element method is chosen for numerical implementation
because of its great flexibility in grid layout and easier handling
of spatial or temporal variability. Triangular elements with linear
interpolation functions are used for the spatial discretization,
while a simple implicit iterative scheme based on the trapezoidal
rule is employed for time integration. The method is shown to be
unconditionally stable for an arbitrary grid for both one- and two-
layer problems, in the case of ne iteration and constant parameters.
General convergence criteria required by the iteratiom procedure
are developed and expressed in terms of the basic parameters of the
problem and are also confirmed by numerical experiments. The
accuracy of the computational scheme is investigated on a regular
grid. It is found to be satisfactory with respect to numerical
amplitude and phase errors; a criterion is presented for avoiding
spatial oscillations caused by the approximation of steep
concentration gradients.



Analytical solutions are derived for one- and two-dimensional
counterflow conditions and are subsequently used for verification
purposes. The sensitivity of the phenomenon to the intensity of
interfacial mixing and other parameters is studied and 1s found to
vary in different classes of problems. Lastly, the numerical model
is applied to two particle dispersion experiments carried out
recently in the Massachusetts Bay and comparisons with field measure-

ments are presented.
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CHAFTER 1

INTRODUCTION

Coastal areas have traditionally been centers of urban and industrial
growth. 1In addition to the convenience of gsea transportation, a basic
reason for their attractiveness had been the seemingly infinite capacity
of the nearby water to receive all kinds of unwanted effluents. In recent
years, however, the rapidly increasing quantities of such effluents, and
the developing trend for exploration of coastal waters for oil, mineral
deposits and other resources, coupled with the growing concern over COnser-
vation of environmental quality has led to the necessity for rational
planning of the coastal zone utilization, instead of allowing
uncontrolled expansion.

A major technical problem associated with such planning strategies is
the prediction of how an effluent will spread in a given body of water.
The answer to this question is by no means simple. It involves knowledge
of the flow field on the one hand and the characteristics and possible
interactions of the pollutants on the other. The flow patterns in near
shore waters are usually extremely complex and depend on meteorological
conditions, bottom topography, boundary gecmetry, etc. To gain insight
into the processes that take place in nature, three approaches may be
followed:

(i) Direct measurements

(ii) Hydraulic modeling

(iii1) Mathematical modeling

=19-



Measurements in coastal waters are normally very expensive and mostly
site and time specific, so that by themselves they cannot provide an
adequate overall view of the processes of interest. However, they are
necessary in conjunction with models of categories (ii) and (1ii), since
they provide data required for inmput or for verification purposes.
Hydraulic models can yield a very detailed picture of the phenomena, but
considerable difficulties are encountered in the proper scaling of all
relevant factors, inevitably resulting in some degree of simplification of
the representation. They are in general site-specific and also are much
more expeunsive than mathematlcal models. This last category consists
essentially of the representation of the actual processes by mathematical
equations, which are subsequently solved by some sort of analytical or
numerical technique. The more complex the mathematical representation,
the more difficult, but supposedly the more accurate, the solution becomes.
Mathematical models are relatively inexpensive and general emough so that
they can be applied to different areas with only minor changes.

With the widespread use of high-speed computers, increasingly detailed
mathematical formulations can be handled by various numerical methods.
Initially, two-dimensional one-layer models, treating the flow field as
uniform over the depth, were developed to describe the transient circulation
patterns in near-shore waters. This approach is justified because of
the characteristic shallowness of coastal waters relative to their hori-
zontal dimensions and yields the simplest approximation to the actual flow
field. Finite difference techniques have been used for several years, but
lately finite element models, allowing greater flexibility in the represen—

tation of complex geometries, have emerged.

-20-



From a practical viewpoint, of main interest is not the flow field,
but rather the transport and dispersion of some substance due to a given
flow field. Therefore, the information obtained from a hydrodynamic model
is subsequently used as input to a transport model. The latter normally
solves some form of the convection-diffusion equation, expressing the mass
balance of the constituent of interest. Again, primarily finite difference
schemes have been used in the past and only recently have finite element
techniques been employed ( 2, 77, 44).

During the winter season, a water body is generally well-mixed
through the depth. However, this is not the case during the summer. Due
mainly to increased heat input near the surface, a density stratification
begins to develop in the spring and by mid-summer a strong thermocline
exists and practically divides the water column into two distinct layers.
The dynamics of such a system cannot be adequately represented by a one-
layer approximation, as severe velocity differences, and even counter-flows,
may exist between the layers. The effect of stratification on the flow
pattern has been evaluated by means of two-layer analytical solutions for
oceans (87 and coastal waters (6 ). 1In lakes, where the wind is the
primary forcing mechanism—as opposed to tide——the vertical dimension has
been treated in more detail im both analytical (40) and numerical (45)
investigations, at the expense of eliminating one of the horizontal
dimensions. Severe simplifications of the geometry and of the governing
equations had to be introduced, understandably, in order to cbtain
analytical results. To achieve a better description of both the vertical

structure and the horizontal variability of the flow in a natural water
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body of arbitrary geometry and bottom topography, multi-layer or quasi~
three-dimensional numerical models were formulated (41, 72, 86). Simul-
taneous with solving the hydrodynamic equations, one has to keep track of
density changes, as they may significantly affect the flow field. Therefore,
most multilayer circulation models are coupled with dispersion models

which describe the transport of heat and salt, on which the water density
depends., This implies that concentrations of heat and salt along open
boundaries have to be specified and gain or loss through the water surface
or through the boundaries has to be taken into account.

The development of large multilayer computer codes has recently been
initiated ( 1, 41, 38, 72). Primary emphasis is being placed on improving
the computational techniques for solving the increasingly complex relevant
equations more efficiently and in software organization for easier use.
Little attention has been given so far to the proper cholce of the values
of the parameters involved or the semsitivity of the solution to parameter
varlations. As the number of parameters and the boundary conditions that
have to be specified increases with the number of layers, model verifica-
tion becomes a very difficult and costly task. Extensive field data are
generally required for the preper application of multilayer models to a
given area, since, in the absence of realistic inputs (especially boundary
conditions), the confidence in their results diminishes rapidly. So,
despite thelr great potential, the usefulness for predictive purposes
becomes doubtful.

The question of cumplexity of the mathematical representation of the

1 R | L o
R - ..
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g ————
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from a practical viewpoint. A less ambitious, two-layer model, while

still containing a small number of parameters, and requiring minimal "tuning",
provides a significantly different plcture of the phenomena than its one-
layer counterpart and is quite appropriate under strong natural stratifica-
tion. The two-layer idealization is a natural one with the distinct
thermocline being almost a "material” interface, allowing little transfer
through it and lending itself to a clearer representation of the physical
processes of entrainment. By contrast, in a multilayer approach, the
layers are necessarily separated in an arbitrary way by imaginary {(mostly
horizontal) interfaces. Of course, this is necessary when a strong thermo-
cline is absent and the change in density is more or less continuous from
the surface to the bottom.

The objective of this study is to investigate problems assoclated with
properly describing the dispersion of matter in a two-layer system. Trans-—
port of constituents, notably water quality parameters, is being incorpor-
ated in the multilayer models menticoned above. However, the fundamental
physical behavior of dispersion in a layered system has not so far been
fully investigated. It is felt that this can be best understood in the
simplest two-layer case, which therefore has to preceed a wultilayer
approach. This work attempts to establish this behavior by studying first
the physical processes involved and developing simple analytical solutions
which identify the essential features of the problem, before proceeding to
the numerical aspects of the solution. Then, the details of the finite
element method are discussed and its stability requirements and accuracy

characteristics for this class of problems are established.
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The numerical model is intended to describe the dispersion of an
arbitrary constituent, possessing in general vertical mobility, in a
two-layer coastal water body of variable bottom topography and boundary
geometry, under transient flow conditions. This being primarily a study of
the dispersion phenomenon, the velocity field in both layers, as well as
their thicknesses, will be assumed known, presumably obtainable through a
separate hydrodynamic model. By uncoupling the hydrodynamic and dispersion
models, the same flow pattern can be used to investigate very economically
the spreading of several different substances and to experiment with
different source locations, loading strategies, parameter values etc.
However, this cam only be done provided that the constituent of interest
does not affect significantly the flow field or the density structure.

After the mathematical formulation of the problem (Chapter 2), the
nature of the dispersion coefficients is examined in detail (Chapter 3).
The horizontal eddy diffusivity is related to the grid size of the finite
difference or finite element discretization, while the contribution of
vertical shear is handled through an extension of Taylor's method (76)
to two-dimensional flows. A brief discussion of the vertical diffusion
coefficient is made at the end of this chapter. In Chapter 4, the physical
mechanisms responsible for material transfer between the layers are
examined. Through a literature review of theoretical and experimental
investigations, mostly related to simple one-dimensional flows, quantita-
tive relations expressing the interfacial transport in terms of the mean

flow characteristics are proposed.
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Analytical solutions for simple flow conditions are derived in
Chapter 5. These show some of the peculiarities of the dispersion process
in a two-layer system. The sensitivity of both one- and two-layer disper-
sion phenomena to changes in the parameters involved is examined in
Chapter 6. While this is done only for simple flow conditions for which
analytical solutions are available, the results are believed to hold to
some extent in more general cases as well.

The relatively new finite element method has been chosen for numerical
implementation, after its successful application in one-layer dispersion
models. The basic formulation along with a discussion of the solution
procedure is presented in Chapter 7. Approximate stability criteria
based on a simple theoretical examination of the finite element formulation
are developed in Chapter 8. The effect of the finite element discretiza-
tion on the accuracy of the solution is also investigated. Numerilcal
experiments are carried out to supplement and confirm the theoretical
results. Knowledge from analogous finite difference approximations is used
to some extent, since their stability requirements and other restrictions
have been studied extensively. Despite rapid developments in the applica-
tion of finite element methods to fluid problems,rigorous theoretical
stability analysis has not yet succeeded in yielding practieal results.

Verification of the numerical scheme against the analytical solutions
presented in Chapter 5 is performed in the last chapter. Finally, applica-
tions to Massachusetts Bay serve partly as further verification of the
model by comparison to large scale field experiments and partly as

examples of its applicability to "real world" problems.
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CHAPTER 2

MODEL FORMULATION

2.1 Integrated Governing Equations

The mass balance of a constituent introduced in a water body
is expressed by the three-dimensional convection-diffusion equation
which, for negligible density changes either in the ambient conditions
or due to the inclusion of the constituent, has the form

de _ _ 93 _ 3 _ 3
Nt % (ucc + qx) 5y (vcc + qy) P (wcc + qz) +p (2.1)
where

c is the local volumetric concentration

U Vs W, are the constituent velocities in the x, y,z direc-

tions respectively

4, qy, q, are the diffusive fluxes in the x, y, z directions

p represents the generation or decay of the constituent per

unit volume.

To obtain the equations pertaining to a layered system,
integration of Equation (2.1) between the layer boundaries is
required. In what follows, these equations are derived for the two-
layer case defined in Figure 2.1. The procedure is analogous for a
multi-layer formulation.

Using Leibnitz's rule one obtains for the top layer:
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which, after rearranging, results in:

3 n n R n n
a
e edz = = = dz - o2 dz + dz +
T J-h z N J_h (ucc+qx) z 3y I_h (vcc+qy) z I_h pdz
1 1
an an an _ an oan _
+[c(3t ¢ 3x + 8 wc)+(qx Ix * qy 3y qz)]n +
dh dh - dh dh ch
1 1 _1 1 1
+[c(3t t U 5 * Ve dy +w )+(q Ix qy oy + qz)]—h
(2.2)

This form expresses the time rate of change of the constituent mass
within a control volume of length dx, width dy and bounded by the
lines z = -hl and z = n. The first two terms in the right hand side
represent the advective and diffusive fluxes through the sides, the
third term represents the generation or decay of material within the
control volume and the last two terms define the exchange through
the top and bottom boundaries, which are, in general, moving.
Normally, the horizontal velocity of the constituent is con-
sidered equal to the local water velocity, i.e., u, ¥ u and v, ® V.

However, unless the material is neutrally buoyant, this will not

hold for the vertical component. By introducing the (positive
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dovnwards) settling velocity L and noting LA S A the

bracketed terms in Equation (2.2) can be written as

=90 i) o o an -
1[‘-.:( +uax+vay w+w)(q A By~ qya)]
[c(—n~~w+w )y - qg ]
oh sh oh dh oh
- __.l 1 1, _1 _1 -
Pp, LeGT U P Ve PV Y Yy 5

Dh1
= — + -
[eGy+vw) - qy ]-—hl
where q and q are the diffusive fluxes normal to the free surface

and interface respectively, per unit projected area on the
horizontal plane, and are considered positive when outward from

the layer. The kinematic condition at the free surface requires

[__W]n=0

and consequently

(2.3)

This term represents the gain (or loss) of material from the
atmosphere and in most cases vanishes. The interface, defined as
the position of steepest density gradient, is not necessarily a

material surface. Its location is given by

z = — hl(x,y,t)

The position of a particle in the neighborhood of the interface can be
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expressed in terms of the boundary and a deviation Az, i.e.,

z = =h, + Az

1
Then,
LoDz _ D e
Dt Dt Dt
or
Dhl
[w + B;f--hl =, (2.4)

The relative vertical velocity, W, of the water particles with
respect to the layer boundary will be referred to herein as
"antrainment" velocity and, by convention, it will be considered
positive when directed upwards. Since v > 0 dmplies %%5 > 0 and
the latter indicates that the water particle moves upward relative
to the boundary, it follows that a positive entrainment velocity is

associated with a net water motion from the bottom to the top layer.

We may now write

P =g w -w)-4¢ (2.5)
b1 -hl e s i

Equation (2.5) shows that settling counteracts entrainment. In

the case of a neutrally buoyant contaminant (ws = (}) the top layer
would gain material through the interface at a rate wec_hl, provided
v, > 0. This gain is reduced for settling particles and actually
becomes zero when LA and changes to a loss when Ve > Wyo The
latter case simply indicates that the downward settling rate of the

particles relative to the water is faster than the upward rate of

advance of the water through the interface.
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The concept of entrainment is quite familiar in the field of
fluid mechanies. It is usually assoclated with a relatively fast
moving or highly turbulent layer (e.g. jet) that draws some mass from
the adjacent ambient (and usually quiescent) fluid. In large water
bodies, such as lakes or oceans, the term entrainment commonly
refers to "erosion" of the quiescent bottom layer by the top layer
moving under the influence of the wind or other driving mechanism.

In coastal waters both layers are quite turbulent and possess
velocities of the same order of magnitude. Therefore, there should
be exchange of water mass both ways through the interface, and v,
will represent only the net result of this exchange. Viewing the
concentration as continuous over the whole depth (Figure 2.1), but
agsuming that the transition zone between the layers is very narrow -
consistent with the two layer idealization of the system - it is
reasonable to approximate the concentration at the interface by the
average of the concentrations of the adjacent layers. Therefore,

we set

~ L2 (2.6)

in Equation (2.5). This becomes more "exact” as the concentration
gradient increases, approaching a discontinuity at the interface.
The other component, 9 of the interfacial transport is a diffusive
flux and is generally expressed in terms of the difference in

concentration between the layers, i.e.,

qi =a (c]. - cz) (2.7)

where o may depend on flow parameters and the concentration difference.

-31-



A detailed discussion of the interfacial transport process follows
in Chapter 4.
' With respect to the remaining terms of Equation (2.2), the

following notation is introduced:

n
Cl = J_h cdz = Hl ¢, (2.8)
1
cl = cl + cl
= 11 "
uy ul t+u (2.9)
= v "
vl Vl-l'v

where the overbar denotes the average value over the layer and the

double prime the deviation from the average.

n
[—h pdz = R1 - D1 (2.10)
1
where Rl represents the input or creation and Dl the decay of the
constituent within the layer, per unit projected area.

In the simplest case of linear decay,

D1 = kCl _ (2.10a)

where k denotes the decay rate.

Equation (2.2) is now written as

L4 n
acC
_1 3 < 3 (= =_§___ "o _3_ won
e + ax(ulcl) + ay(vlcl) o J—h (qx+u c')dz 3y J_h (qy+v c')dz +
1 1
+ R

- D, + + P
1 D1 Ps
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or

301

1.3 =g 3 oy _3
o+ ar W0 + 5 (0 5 tP (2.11)

X X

The horizontal turbulent diffusion fluxes qx, qy are usually
expressed in terms of the gradients of the layer-average concentration

and the turbulent diffusion coefficient, which in its most general form

is & second order symmetrical tensor:

_ ac - ac
I XX 3% Xy oy
y yx 3x  yy 9y

Integrating through the layer thickness, and taking into consideration

ac

c
the fact that 3¢ , — Aare constant over Zz:
ax ' 3y

- f q dz=H (€ _ z=—+E_ 77
-h X

1

(2.12)
T ac Jc

- I qy dz = H, (¢ N € _1
'hl

where the overbars denote layer-average values. Under horizontally

isotropic conditions, E =t =cand €__ = e =0,
xx ¥y xy ¥X

By analogy, the horizontal transport terms associated with
vertical wvelocity variations are expressed by means of shear

dispersion coefficients, as follows:
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IR - —_— —
u"c'dz l-ll(Exx . + E (2.13a)

) fn d acl d Bcl
=h

n
- I v'ieMdz = Hl(E
=h

1

3¢
d 'aTl + ¢ a_l) (2.13b)
. yx, Yy, 9

The horizontal dispersion processes in a layer will be examined in

Chapter 3.

In a similar way, by integrating Equation (2.1) between the

bottom layer boundaries, we obtain:

-h -h
2 oo Eom - i [ Taaswenas - 2 [ Caagvenaz +
3t ax Ut/ BytVae 3% | 4 U 2 % ”hqy z
2
+Ry - D, +P , + P,
or
ac
_2 .9 = 3 (T cy= - 2 -9
ot + E}x(UZCZ)+ By(VZCZ)— X sz ox Yo + P2 (2.14)
where
sh oh 3h 3h sh
e le(—L 1 N R 1 _1
P2 T [C(Bt ™ v oy rw ws)+(qz+qx3x + qy 3y )]—hl
= -[ew, -w) -qa,]. _ _
e s i hl Pbl (2.15)
and
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2 2 2
= + —= — =
Pb2 IC(Bt tu 3x tv oy * w-ws)+(qz Ix Bx + qy oy )]-hz
Dh2
Sletgptv-v) -l
The kinematic condition at the bottom requires
Dh
[—2 + w]
Dt -h, =0
2
and the loss of material to the bottom reduces to
sz = -wsc_hz -9 (2.16)
This term may also be written as (34, 11)
sz = -Aws €y (2.16a)
2
where
A = 1.0 for perfectly absorbing bottom
A = 0.0 for perfectly reflecting bottom
In summary, the governing equations for the two layers are:
ac ac ac
1,3 - 3 /= 3 1 1
—— — —_— M —— H ————— _—
5 et )T R 1R By ey Y
dc dc
2. 1 .
+ % nylﬁl Tt EyylHl 5 )+
e, + Ez L
+ (Wé"w ) 5 + a(c2 - cl) -k C1 + Rl
(2.17a)

—~35~



3c ac 3c

2 .3 5 3 =3 _2 2
5c * ox (52620 * oy (20 =3 (Exx2H2 5% xy, 20 ) +
3¢ ac

9 _2 _2

+ By(ny HZ 9x E H2 9 )
2 2
'c31+'c22 _
- (w ~ws) 7 - a(e, - cl) -Awe, -k 02 + R2
(2.17b)

where the turbulent diffusivities have been absorbed in the dispersion
coefficients and it was assumed that the concentrations are
approximately uniform within each layer. These expressions include
both integrated and average concentrations; by substituting C/H for
¢, the latter can be eliminated. The layer-integrated concentration
ig chosen here to be the solution variable, being more convenient

to work with in the integral form of the governing equations. In
addition, it is a more "natural" quantity when the vertical concen-

tration distribution over the layer is not uniform.

2.2  Applicability, Limitations and Extensions of the Formulation

The two-layer density stratification 'is a reasonable
approximation of natural conditions during the summer season in the
absence of severe weather phenomena. A temperature difference of
more than 10°C between the top and the bottom layer is quite common
in coastal areas such as the Massachusetts Bay (22). In addirionm,
there is a difference in salinity between the layers, which is more
than 1 ppt for the Bay ( 8). The combined effects of temperature

and salinity imply a density difference of about 3°/00 between the
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layers. In the model the layer densities are assumed to be known

as functions of space and in the simplest case, to be constant.
Density variation is assumed to be treated by the hydrodynamical model
which is also used to provide necessary inputs of layer velocities and
thicknesses. It is well known (79} that the thermocline depth can
remain essentially fixed for substantial periods of time (of the

order of weeks) when a balance exists between surface heating and
mechanical energy input. The two-layer idealization of the system

is based on the assumption that such statistically steady-state
conditions exist for time intervals longer than the time scale
associated with the dispersion phenomena of intefest.

The densities do not enter in the calculations except for
establishing the Richardson number upon which, as will be seen later,
the interfacial transport depends. However, the assumption of
prescribed densities seems to limit the applicability of the model to
dispersion of passive constituents, i.e., not affecting the density
structure. The most interesting non-passive pollutant is heat,
released from power plants in the sea. A temperature rise of 3°C over
the ambient, which is practically an upper limit on allowable heat
discharges, causes a density change of 0.60/00, which is of the
order of 20%7 of the initial density srratification. For such small
density changes, the model can be still considered applicable.

The formulation in terms of the layer-integrated concentrations
treats, in general, the total quantity of material within the layer.

Certainly, the two-layer discretization is more appropriate when the
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concentrations, as well as the flow parameters, are approximately
uniform within each layer. This may be unrealistic in the case of
heat, for example, or suspended sediments but it seems reasonable

for neutrally buoyant constituents. The uniform distribution is the
simplest profile that can be chosen. A choice of a different profile
is permissible, provided that the assumption of self-similarity is
acceptable. The specific profile choice will affect the boundary
terms and, in addition, the dispersion and advection terms (11},

which have to be expressed in terms of the constituent mean velocities.
Such extensions do not present any conceptual difficulties.

Multilayer formulations may be evoked when more refined treat-
ment of flow and concentration variations over the depth is desired.
In this case the interfaces are nét identified with density dis-
continuities. As coastal waters seldom exhibit a distinct stratifica-
tion other than in two-layers, multiple layers are almost purely
mathematical, aiming at a more detailed description of the phenomena
under consideration. Normally these layers are separated by arbitrary
horizontal surfaces that are fixed in time (41, 86, 72). The
formulation presented in the previous section can be readily extended

to n layers.

2.3 Boundary Conditions

The boundary conditions along horizontal boundaries confining the
domain under consideration may be of two types, since the problem
involves second order spatial derivatives:
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{a) Concentration specified, in terms of either layer-average
or layer-integrated value
(b} Concentration gradient normal in the boundary specified,
or, alternatively, normal dispersive flux (Qn) specified.

The second kind of boundary condition 1s commonly used along land
boundaries, where the normal dispersive flux is set naturally to
zero (reflecting boundaries). Ideally, there is no advection through
the land boundary, either. The velocity inputs have to be obtained
from a hydrodynamic model that allows no water mass transport through
the discretized boundary segments. This would imply that,if the
pollutant concentration 1s constant over a segment, there will be no
loss or gain of material through it. However, when the concentration
is not constant, mass conservation may, in general, be violated and
this has to be taken into consideration in the dispersion model.

0f major concern is the treatment of the ocean boundary. As
long as the plume remains well within the domain,the concentration may
be simply set and maintained at zero along that boundary. However,
when the plume, after some time, approaches the boundary, the zero
concentration cannot be imposed any more, since it will create an
unnatural barrier to the plume that would otherwise extend out of
the domain being modelled. The ideal solution to the problem would
be to make the grid as big as to be sure that the plume never reaches
the boundary. This is not usually possible in practice. Therefore
an "engineering" approach has to be taken. This depends on the

particular problem being solved and the judgement of the modeler, but
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generally different boundary conditions are prescribed for inflows
and ocutflows.

In models of salinity intrusion in estuaries (1-D}, during ebb
tide the salinity gradient is specified at the boundary as equal to
that obtained from the neighboring interior zone; during flood tide the
salinity itself is prescribed at the boundary, starting with the value
acquired at the end of ebb and increasing up to the ocean salinity
following some postulated function, as discussed in (27). In a
2-D domain, there is not, in general, inflow or outflow over the whole
ocean boundary at the same time. It is easy, however, to keep track
of the velocities at the boundary to determine their direction at any
point and any time. Whenever there is outflow, in principle, the
concentration gradient should be specified, by analogy to the one-
dimensional case. Whenever there is inflow, however, things are more
difficult. In general,the concentration should be specified, but this
will not only depend on the last outflow concentration at that point,
but essentially on the conditions and the mixing out of the boundary,
since in pollution problems there is no refgrence value, as was the
ocean salinity in the salinity intrusion problems. The presence of
decay further complicates the matter. As Leendertse states (42)
the specification of the boundary concentration depends on the
modeller's intuition and feeling of the mixing processes out of the
boundary.

A simpler procedure for outwards flow is to specify the gradient

as zero, allowing the material simply to advect through the boundary.
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The gradient near the boundary is small anyway, unless the source is
close by, in which case the boundary has probably to be moved

further out. The same boundary condition may be kept for a subsequent
inflow period provided its duration is substantially smaller than the
outflow period. This type of boundary condition, which essentially
assumes complete mixing in the neighborhood of the ocean boundary,

was tried in earlier applications of the one-layer model to
Massachusetts Bay (65)., The results are satisfactory provided the
plume reaches the boundary in a gegment of predominantly outward flow,
which is usually the case. It must be noted that in the remaining
segment of the ocean boundary, far from the plume, the concentration
must be specified, normally at zero, to provide a referemnce value for
the computations in the interior., In a multilayer model, obviously
the boundary conditions have te be specified for each layer

separately.
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CHAPTER 3

THE DISPERSION PROCESS IN A LAYER

3.1 Mechanisms of Dispersion

In this chapter the physical mechanisms causing horizontal spread-

ing of a constituent within a given "layer", neglecting the interaction

between thelayers, will be examined. As evident from the convection-

diffusion equations (Section 2.1), there are basically three processes

responsible for the dispersion of a substance in the context of a

horizontally two-dimensional flow field:

a)

b)

)

Advection, most importantly temporal or spatial variations of

the layer—averaged velocities; mathematically represented by

the advection terms in the equations.

Turbulent diffusion, that is, mixing due to small scale turbulent
velocity fluctuations; quantified by the turbulent (or eddy)
diffusivity, based on the widely used analogy between turbulent
mixing and molecular diffusion. This hypothesis has proved very
convenient for studying diffusion problems, although it 1is not
necessarily correct, especially for transient problems ( 14,51).
Dispersion due to vertical shear, that is, wvelocity nonuniformities
over the layer thickness. These variations create an additional
effective horizontal spreading in the 2-D concentration field.
Their contribution is represented by the shear dispersion coeffie-
ient, the concept of which is based again on the assumption of
analogy between shear dispersion and turbulent diffusion. The wvalid-

ity of this assumption will be discussed in Section 3.3.
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From the above it can be seen that the differentiation between
mechanisms and the introduction of diffusion and dispersion coefficients
is basically due to the simplified representation of the velocity
field. In a three dimensional description the shear effect would be
incorporated in the first mechanism. With respect to the relative
importance of processes (a) and (b), normally the term advection is
associated with the large scale circulation, while diffusion refers to
smaller scale turbulent mixing. However, the separation point is not
always clear and generally depends on the level of detail in which the
advection process can be modeled. In fact, if only an overall "mean”
velocity is known over the whole area of interest, even large size
eddies that would otherwise be considered as part of the circulation
field have to be included somehow in the diffusion terms. It is clear
that in that case the magnitude of the diffusion coefficient should
increase, while at the same time the uncertainty in its estimate
would also increase. These parallel effects are always present when
the velocity field is simplified since a larger number of contributions
to mixing are lumped into a single "diffusion" coefficient. Therefore,
the need for a reasonably detailed description of the flow field is
obviocus, since the turbulent diffusivity concept is an approximation
to the mixing phenomenon to begin with. On the other extreme, if the
velocity fleld is known in great detail, the scale of mixing represented
by the turbulent diffusivity is reduced and the contribution of the
corresponding term in the equation diminishes.

Let us consider the description of the diffusion of a cloud after
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an instantaneous injection in a twe dimensicnal domain. At the be-
ginning,moderate size eddies contribute to the advection of the cloud
as a whole, while mixing takes place in very small scales. As the
size of the cloud increases over time, larger and larger eddies become
involved in the internal mixing of the cloud, while its center moves
under an even larger scale circulation. Consequently, the effective
diffusion coefficient increases with time (or size). This behavior
has been studied in the past (56, 16) and relations between

diffusion coefficient and elther cloud size or diffusion time have
been proposed. However, when the flow field is specified, e.g. by

a hydrodynamic model, at a certain spatial discretization, such con-
tinuous growth of the diffusion ccefficient is not justified any more.
Once the cloud slize increases beyond the level of discretization of
the finite difference or finite element grid, eddies of the scale of
the grid size that now contribute to the internal mixing of the cloud
are still described by the advection terms in the equation. Therefore
the diffusion coefficient should only represent mixing up to the length
scale of the spatial discretization of the mathematical model.

The dispersion process in a two-dimensi;nal flow field is undoubted-
ly extremely complex to handle, because cof the incomplete understanding
of the several mechanisms involved and the difficulties in their
mathematical description. An authority on the subject, A. Okubo,
states in concluding a chapter on horizontal and vertical mixing in
the sea (56): "Diffusion is Confusion. Nobody but Maxwell's demon

really knows what's going on'"! Without attempting here an exhaustive
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investigation of the phenomenon, some important aspects are examined
in the subsequent sections with the particular goal of giving rational
quantitative expressions for mechanisms (b) and (c) (described above),

useful in mathematical modeling applications.

3.2 The Horizontal FEddy Diffusion Coefficient

The introduction of the eddy diffusivity concept is based on
the convenient assumption that the small scale mixing due to turbulent
velocity fluctuations is amalogous, although much more intensive, to
molecular diffusion. 1In the application of this concept to models of
diffusion processes in large water bodies, the coefficient is commonly
used to incorporate any large scale mixing not accounted for explicitly
by the advective terms, as discussed in Section 3.1. For estimating
the value of this coefficient for a particular problem, of primary
importance are the intensity of the turbulence as measured by either the
r.m.s. velocity fluctuations or the supply or dissipation of turbulent
energy, and the length scale over which the mixing takes place.

From the theory of locally isotropic turbulence the well-known
4/3-1law is derived. This is based on the cohdition that the eddies
responsible for mixing belong to the inertial subrange of turbulence,
that 1s, the range where the energy influx from larger size eddies is
balanced by energy transfer and dissipation to smaller size eddies. As

presented by Osmidov (62) the 4/3-law is written:
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- e e1/3 L4/3 (3.1)

where
£ = the eddy diffusivity
e = the rate of energy dissipation
L = the length scale
¢ = a dimensionless constant, or order 0.1 (61),

Alternatively, for diffusion on the sea surface under relatively calm

conditions, ¢ has been simply expressed as (61):
e = k143 (3.2)

where k is of the order of 0.01 in CGS units (varying from 0.005 to
0.016). Nevertheless, the value of ¢ or k cannot be discussed inde-
pendently of the value of the length scale used in the above formulas.

Certainly, the structure of oceanic turbulence is not necessarily
isotropic. It is argued, however, that eddy sizes much different than
the areas of direct energy influx are essentially isotropic im the
horizontal directions (62). Of course, this isotropy is not extended
to the vertical direction due to the limitaéion of the bottom or strong
density stratification. Consequently, the vertical diffusion coeffi-
cient should be much smaller than the horizontal coefficient since it
is associated with a smaller length scale. Moreover, in the areas of
significant energy influx the corresponding eddies will not follow the
jaws of the inertial subrange, that is, the 4/3 law will not hold

and a plateau in the value of horizontal diffusivity should be reached.
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Qualitative agreement of these considerations with measurements is
presented in (58) and shown in Figure 3.1. The length scale was
defined as £ = 30, where 02 is the radial variance of the horizontal

distribution of the patch. The eddy diffusivity was determined from
e =2 (3.3)

which is apparently based on a circular idealization of the patch
and the assumption of two-dimensional Gaussian distribution.

According to Figure 3.1 :

e=2x10 34 % < 10°
£ = 104 ; 105 < < 5-105 (3.4)
e = 1073 g4/3 : 4> 5.10°

where £ in cmzfsec and £ in cm.
It is seen that the comstant of the 4/3 law decreases at larger length

scales.

A very good collection of diffusion data in the ocean was
presented by Okubo (33), who proposed as best fit to all the data

the relation

e = g.01 o110 . 100 <2 <10 em (3.5)

where € and £ as defined above.

While (3.5) is useful as a first estimate of £ under any

conditions, it 1s not based on any theoretical arguments. Most
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importantly, the individual sets of data (which necessarily extend
over smaller ranges of L) seem to follow quite closely the 4/3-law,
but with different constants of proportionality. These 4/3-power
lines are drawn {(by eye) in Figure 3.2 along with Equation (3.5)
given by Okubo. It appears that the slower growth of £ with &
indicated by (3.5) does not prove that the 4/3 law is not valid,

but may be simply due to general shifts in the 4/3 dependence {as
seen from Figure 3.1) and also to some differences of energy inten-
sities between the individual areas where the measurements were taken
3

from. The constants of the 4/3-power fits are of the order of 10

CGS units, as shown in Table 3.1.

Table 3.1

Constants k of 4/3 - power law fitted
to individual sets of data of Figure 3.2

Location k(CGS units)
North Sea (1964) 0.7 x 10_'3
North Sea (1962 II) 1.0 x 10-3
Cape Rennedy 1.0 x 1073
N. York Bight 1.6 x 107>
Off California 2.2 x 1073
Banana River | 0.4 x 1072
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These values are consistent with (3.4) but both appear an
order of magnitude too low if compared to the average value of k
in Equation (3.2). This apparent contradiction is, however, caused
by different definitions of the length scale used in the formulas,
Indeed, L in (3.2) is defined as the typlcal distance between

diffusing particles and the diffusion coefficient was measured as

dis

(3.6)

)
Il
N =

Then, L = /2 g and consequently £ = 3L//Z . By also comparing the
formes of (3.3) and (3.6) it is seen that there must be an overall

factor of AQJiDA/B = 10.9 between the constants in Equation {(3.2) and

VZ

Table 3.1. The order of magnitude discrepancy is thus explained.

Earlier data reported by Orlob (59) also agree quantitatively
with (3.2). Thus, the 4/3 law seems theoretically and experimentally
acceptable for expressing the horizontal eddy diffusivity in the sea,
provided the length scales of interest are not of the order of the
size of the energy containing eddies. In addition, the 4/3 law 1is
not fully acceptable near the shore (92), due to the shoreline and
bottom interference and the presence of a strong wave energy band -
the waves being neglected in deeper water throughout the present
work.

A more general way of expressing the eddy diffusivity is in the

form (16, 5 ):
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e=0U1L 3.7

the r.m.s. turbulent velocity fluctuation

where U

and L = the (horizontal) length scale of turbulence

Arguing that temporal and spatial variability are analogous,
it is seen that in isotropic turbulence Equation (3.7) is eguivalent

1/3. Therefore, the length

to the 4/3 law, since B a« AU « (eL)
scales of (3.7) and (3.1) or (3.2) are equivalent within a dimension-
less constant. An expression of the eddy diffusivity in the form
(3.7) or (3.1) instead of single length dependence as in (3.2) or
(3.5) presents the advantage of incorporating specific knowledge of
the turbulence intensity in the area under consideration and can be
more useful when the effect of varying mixing intensity caused by
changes in meteorological conditions over time has to be taken into
account. Of course, the simpler formulas can be used as good approx-
imations in less ambitious modeling efforts. In any case, the
appropriate length scale to be used in a finite difference or finite
element model needs to be examined.

The concept of the length scale of turbulence is not precisely
defined and is commonly quantified indirectly through measurement of
other turbulent quantities. Various investigations carried out
mainly in boundary layer flows and summarized in (83) show that,
faf.from the wall, the length scale tends to an asymptotic value of

0.08 to 0.10 of the pipe radius or the channel depth; this is an

order of magnitude smaller than the size of the largest eddy thatr
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could conceivable be formed in the flow. Similar conclusions have
been reached in free turbulent flows (39).

Extending the above to ceastal waters, where the flow field is
prescribed (known) at certain grid points, it may be argued that the
internal horizontal mixing within the grid "cells" can again be
represented by using a length scale an order of magnitude smaller
than the typical grid size. Imn fact, some investigations have been
carried out with respect to the so-called "sub-grid scale' eddy
coefficient applicable to high-speed numerical computations of
turbulent flows. This is introduced into the various schemes to
account for the turbulent exchange due to eddies smaller than the
characteristic grid size and thus not explicitly representable in
the computations. The length scale used for the evaluation of such

sub-grid scale eddy viscosity coefficient is generally given as

L =chA (3.8)
where A is the finite difference grid interval and c is a numerical
constant, with a value ranging from 0.20 for isotropic turbulence to
0.10 in shear flows (17). However, the resolution capabilities
associated with large-scale averaging of the hydrodynamic model being
used have to be taken into account. For example, it has been found
(84) that it is not possible to reproduce horizontal eddies of diameter
less than five times the grid size. In this case, a factor of 5 should

be incorporated in Equation (3.8).

With respect to the dependence of the eddy coefficieant on the
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velocity fluctuations,an order of magnitude estimate can be obtained by
using such values as 10Z of the local velocity. Alternatively, employ-

ing the mixing length hypothesis (39):

AU
U « 2%
“ b
i\l , .
where-EE = the velocity gradient over the distance L.
In a two-dimensional flow fileld %% is expressible in terms of derivatives

in both x and y directions and finally Equation (3.7) becomes equivalent

to (24):

N ) — 2 — —
- 5 |2u v du  dv
where p = 2 [3XJ + 2 [ByJ + [By + Bx]

This form has been used for modeling the eddy diffusivity (17,4 )
although-in the latter reference the length scale was associated with

the flow depth and not with the horizontal grid size.
As discussed in (39), a better way of expressing U, especially

in areas with small mean velocity gradients is
ﬁ“‘!”g

where e the turbulent kinetic energy. However, additional equations
would be needed for the transport and distribution of e, and this is
beyond the scope of the present work.

Equation (3.9) permits a straightforward calculation of the

turbulent diffusion coefficient in terms of the grid size and the
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(supposedly known) values of the mean velocities at the grid points.
It is particularly convenient with respect to a finite element grid
with linear expansions because the velocity gradients are then con-
stant over each element (see Chapter 7). The value of L can be
approximately given,based on the equilateral triangle case

(Figure 3.3):

21 1 2 .
L in® 16 d = 36-—; As = 0.12 As (3.10a)
. _¥3 2
Alternatively, using the fact that A = W As”, one obtains:

L . =0.17 VA (3.10b)

Before closing this section, a graphic comparison of the various
expressions is worthwhile. In Figure 3.5 formulas (3.2) (with k = 0.01),
(3.6) (multiplied by 10.9, as discussed earlier) and (3.7) are compared
in the range of 0.2 to 5 km, which are common length scales in numer-
ical modeling of ccastal waters. In Equation (3.7) the value of U is
set equal to 10% U, where U = 5 cm/sec, a typical current velocity
under calm conditions, whiech pertain to most of the measurements

used to support the other two formulas.
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3.3 The Shear Dispersion Coefficients

These coefficients are used to quantify the effective horizontal
transport caused by velocity and concentration nonuniformities over

a layer depth. For one-dimensional steady pipe flow the "diffusion

analogy"
l_ LI - d EE
2 J [ u''e' dA Ex o
A

where A is the cross sectional area, was introduced by G;I. Taylor
(76). Subsequently, the value of the shear dispersion coefficient
has been theoretically determined for a uniform steady flow in a
straight channel by Elder (18) and extensively investigated,
theoretically and experimentally, in less ideal one~dimensional flows
(21, 27,30). An extension to two-dimensional flows has not, so far,
been introduced. The validity and the limitations of such an extension
will now be examined.

In the three-dimensional convection-diffusion equation, where

the vertical velocity component has been neglected,

3¢ de , ,9¢ _ 2 ( QE) + 2 ( EE) + 2 ( EE)

3t + Uax TV 3y dx “°x 9x oy ey 3y at Z 3z

set (as in Section 2.1)

=
n
a]l
-+
=-I
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and neglect the horizontal eddy diffusion terms. Paralleling Taylor's
assumptions, consider the concentration fairly well distributed over
the layer thickness, i.e., c" << ¢, after sufficiently long time,

Then, seek a solutlon satisfying

%% + u'%% + v %§-= 0
which implies
or, since ¢" << ¢:
W' gt v %5 -2 e, 5 (3.11)

This equation expresses the balance, at any point, between the in-
homogeneous convective transfer of the admixture and the vertical
diffusion associated with small variations in concentration over the
depth (51). These variations can be viewed as adapting themselves
to the flow field variability so that, after a sufficiently long
time, the balance is achieved.

Integrating (3.11) over =z:

x dy z JzZ

-_— rZ — (Z "
3C J u"dC + _a__c_, [ V"dC =g _as___
o

o]
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Integrating again one obtains for ¢":

wo B (Tagr (P L B (P (T g 3.12
e’ = o c uw'ds; + Iy P v''dzg const. (3.12)
o %2 Jo Jo % o

Substituting this expression for c¢" and noting that the constant of
integration, when multiplied by u" or v" and integrated over H, will

give no contribution, the integral

H
J u''c''dz takes the form:

0

and multiplying both sides by -1, we obtain:

4
O

H — H z — (H z 2
tn - dc 1 " 2 oc 1 " n
- J u''c"dz = J - ( J u""dz) "dz + 3y J - (J u dc)(J v''dg)dz
o o 0 o % o

(3.13a)
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By similar manipulations:

H — (H z z — B

- mwon = E 1__ " " ac 1

J v''c''dz = J e (J u"dz) (J v'dg)dz + 5;'J re
0o (o] z o o la] z

2
(J v"dc)2 dz

o}

(3.13b)

Tt is seen that the integrated transport due to the spatial deviatioms
of velocity and concentration from their depth-averaged values have
been expressed in terms of the horizontal gradients of the average
concentrations. Thus, the representation of this tramsport by
Equations (2.13a,b) is justified. 1In particular, the shear dispersion

coefficients are now identified as:

H z
d _ 1 1 nary 2
Exx = | J e ( J u'dr) “dz (3.14a)
z
0 o
H -4
d _1 1 nary2
Eyy "1 [ € (J v'dy) “dz (3.14b)
Q 0
H z ‘Z
d d _ 1 1 " "
Exy - ny- H J c { J u'dz) ( J v''dridz (3.14c)
o o o

These expressions represent an extension of Elder's (18 one-dimension-
al formula (similar to 3.l14a) to a two~dimensional flow field. Because
velocity variations in two directions are now explicitly considered,

it is believed that Equations (3.14) will be valid under less
restrictive conditions than its one-dimensional counterpart. Certain-

ly, the derivation was made under certain simplifying assumptions and
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the resulting expressions cannot always be adequate. The velocity
field as well as the velocity profiles, represented by u'" and v" may

in reality vary over both space and time. Inherent in the derivation
is, however, the condition that this variation 1s not too severe. As
already pointed out, Tavlor's approximate treatment of the dispersion
process is valid only a sufficiently long time after the material has
been introduced inte the flow, ensuring a more or less uniform distri-
bution over the depth. Fischer (21) has found that the "initfal time",
TI’ is about half the time scale for cross sectional mixing, Tc' For

vertical mixing (5), this is given by

T =B (3.15)

For values of H~ 20m and g, v 50 cmZ/sec it is found that TI is of
the order of 1 hour. Consequently, Equations (3.14) may be considered
approximately valid provided there are no significant velocity changes
within this period.

Of particular interest is the effect of a tidal flow component
on the dispersion coefficients. Previous investigations om the subject
for one-dimensional flow (57,30,12) have revealed that of primary
importance is the ratio of the tidal period to the mixing time scale
Tc' It was found (30) that for |

T/Tc 21 {3.16)
the dispersion coefficient is essentially the same as if the flow is

steady at any point in the tidal cycle. As a consequence, and since
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the dispersion coefficient involves the square of the velocity, its
average value over the tidal cycle is half the value it would have for
a steady current equal to the maximum tidal current (57y. Condition
(3.16) seems to be normally satisfied in coastal waters.

The importance of the vertical diffusion coefficient ez for
the horizontal dispersion process cannot be underestimated. Equations
(3.14) show that a decreased vertical diffusivity leads to a direct
increase in the shear dispersion coefficients. However, the dispersion
approximation itself could at the same time be questlonable, since the
vertical mixing time may become unacceptably high.

The arguments so far have been developed for the case of a
neutrally buoyant constituent. The treatment can be modified to
handle settling particles as done by Elder (18) in the one-dimensiocnal
case. The shear dispersion coefficient will in that case depend not
only on the flow characteristics but also on the settling velocity.
However, unless a settling velocity term is included in Equation
(3.11) such an extension will be restricted to very fine particles,
the vertical transfer of which is dominated by the vertical eddy

diffusivity rather than the settling velocity, i.e.

5 1 (3.17)

Further analytical expressions for the shear dispersion coefficients

in the case of falling particles can be found in (74).
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It will now be shown that the shear dispersion coefficients

given by Equations (3.14 a,b,c) define a second order (symmetrical)

tensor:
d I £
"= | XX xy : (3.18)
Ed Ed
Xy ¥y

It suffices to prove that the expressions of Ed in two different
coordinate systems are related by tensor multiplication. In the
system (x,vy) let the velocity components be (ul,vl) and in (x',y")

be (u2’V2)’ as shown in Figure 3.4,

Then:
u, Uy
=T (3.19a)
v, J ) vy
where
cosb sint
T =
-sind cosf

is the coordinate transformation rotation matrix.

Since the rotation 6 is constant with z, the layer-average velocities
are

u
2 - 1 (3.19b)

¢ =3

< |
< |

2 | V1
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and consequently, by subtracting (3.19a)} and (3.19b):

1..1.2 l.ll
= T (3. 19C)
Yy v,
Therefore,

H 2 H Z
(2) _ l 1 t 2 = _-1_-_ 1 n t 2
Exx ol J - (J u, dz)“d= i - [ (ul cosf + vy 5in6)dr] "dz
o 0 o o

2 (1) + 2cosfsind Eii) (3.20a)

il
[¢)
Q
n
Lot n]
=
W~
Mo
o
+
i
furl
=
Lan]
=

where the superscripts (1) and (2) denote the coordinate systems
(x,y) and (x',y') respectively.

Similarly,

E(Z) = sinze E(l)

+ cosze E(l) - 2cosfOsind E(l) (3.20b)
¥y XX ¥y Xy

and

E(z) = ~cosfsinf E(l) + cosbBsind E(l) + (cosze—sinZB)E(l) (3.20¢)
Xy XX 54 Xy

In compact form, Equations (3.20 a,b,c) can be written as

@ - g gt (3.21)

|
tr
[l o]
¢ 3

and this proves that indeed Ed iz a second order tensor.
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The transformation relation (3.21) permits the evaluvation of the
shear dispersion coefficients for any coordinate system, provided the
velocity profiles along any twe (arbitrary) perpendicular directions
are known. Such knowledge may be available either through measure-
ments or from experience with the general characteristics of coastal
currents, particularly in the area of interest (2). In general the
veleocity vector at any level will not necessarily be parallel to the
layer-average velocity vector. In other words the velocity profiles
in the x and y directions may have different shapes. Unless very
detailed supporting information is available, accepting different
profiles in x and y (as was done, for example, in (36)) implies
that the results will be dependent on the coordinate system chosen.
Thus, when one has only a vague idea about the velocity distribution
over the vertical, the establishment of a relation between the dis-
persion coefficients and the flow characteristics should be based on
an assumption of some kind of self-similarity of the velocity profile
in the layer; that is, on the assumption that the profile shape remains
the same irrespective of direction. This shape need not be constant
but it may change over space and time. It can be more uniform when
the flow is dominated by the tide and less uniform when the wind
exerts a strong influence. In any case, once this assumption is
acceptable, it can be readily seen from Equations (5.14 a,b,c) that

the shear dispersion coefficients are expressible in the form
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d _, ul

Ex ™ A E (3.22a)
z

' —2 2

gd -\ ¥YH (3.22b)

¥y €,

d o

g¢ =) ¥ (3.22¢)

Xy €,

with the same constant of proportionality A. The values of A for
some simple profiles are listed in Table 3.2. It is assumed that €,

is constant over the layer thickness and also that there are no flow
reversals in the velocity profile, being unlikely because of the
definition of the "layer" with the natural boundary of the thermocline.
Such reversals, of course, can be easily handled in the general
formulas (3.14) but the outcome will have to be expressed through

some other velocity scale rather than the mean.

The principal axes of the dispersion coefficient tensor can be

found from Equation {3.20c¢), by requiring that Eii) = 0 and solving
for the angle 6. 1In the simple case that Equations (3.22}) are used

it is easily seen that Eiy = 0 when either u or v vanish, implying

that the principal axes coincide with the direction of the mean flow
and the normal to it. It is, furthermore, evident that, if v = 0,

the lateral dispersion coefficient E:y also vanishes. Thus, the
lateral spreading of the constituent is left to the horizontal eddy
diffusivity alome. These conclusions agree with the generally observed
higher "overall" diffusion coefficients along the flow direction in

several experiments in the ocean (56).
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Table 3.2

Constants A in Shear Dispersion Coefficient Expressions (Egqs. 3,22)

Profile A

H [——
H/2

1

1 /2 120

E-umax
2
JH 105

u
ma§
u
max
;(
u
max
Parabolic
- =_Z
u 3 umax
u
?fmx }
u
j %[

Bi-linear

u =

Bi-Parabolic H/2 1
-2 210
w=gu H/2
Logarithmic %
- uy 1
b7 Ymax T % 600

*Note: for k = 0.4 and u, = 0.06 u.
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3.4 The Vertical Diffusion Coefficient

As for the horizontal exchange, the concepts of vertical eddy
viscosity and diffusivity have long been used to describe the turbulent
exchange in the vertical direction of momentum and mass, respectively.
The two coefficients are considered approximately equal in well-mixed
regions. In this section the relation of the vertical exchange coef-
ficient within each layer, which plays an important role in the hori-
zontal dispersion rate (as seen in the previous Section) to the mean
flow parameters is examined.

In a given layer there is ideally no density gradient, although in
reality there may be a small one. Under such homogeneous conditions,
the vertical turbulent diffusivity {(viscosity) is usually related to
the velocity profile. Prandtl introduced the concept of mixing length,
as representative of the exchange distance of vertical eddies and
 expressed the vertical eddy viscosity as:

u

az

E “u 22
Z

where‘ag is the local velocity gradient. This indicates a larger

oz
coefficient in regions of high shear, however it is not applicable
when %§-= 0. The determination of the mixing length 1s a source of

difficulty in this kind of approach. It is generally related to the
dimens{ionless distance from the wall, for wall-generated turbulence.
The functional form of the mixing length would yield the form of the

vertical eddy viscosity and this in turn is related to the velocity
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profile also. A review of various eddy viscosity profiles, associated
with different velocity distributions, along with experimental measure-
ments is included in (83). For the logarithmic velocity profile,
commonly used in open channels, the vertical eddy viscosity distribution

is parabolic:

e, = ku, Hn (1 - n) (3.23)
where k = 0,4, is the Von~-Karman constant
u, is the shear velocity at the wall
and N is the dimensionless distance from the wall

For the region far from the wall a constant value was proposed, based

on experiments by Reichardt:
€, = 0.067 u, H {3.24)

This is precisely equal to the average value of the parabolic distri-
bution of Equation (3.23), and may be considered a good typlcal value
to be used in the absence of any other information.

If the profile is actually logarithmic, U, v 0.06 U (depending
cn the friction coefficlent), therefore Equation (3.24) can be

rewritten in terms of the mean flow velocity

£, 24.10'3ﬁu (3.25)
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Considering a layer in the sea, as defined in this work, the
conclusions derived from open channel hydraulics are relevant to some
extent. Near the interface the value of Ez does not go to zero but
gtill to a rather small value, under stable stratification (Chapter 4).
Near the surface, wind and wave effects cause an increase in vertical
exchange intensity and raise the value of €, It appears that the
distribution of €, in such a layer would be more uniform than a
parabolic profile. Of course, the actual velocity profile may not
be logarithmic, either. The use of a constant value for €, in the
layer is consistent with the mathematical idealization of the system.
The two-layer (or n-layer) discretization implies that variability
of the parameters over a layer thickness is not handled explicitly
because either it is really unimportant or is neglected for gimplifi-
cation.

For a layer of 10m thickness and a mean velocity of 0.10 m/sec,
Equation (3.25) yields for the vertical eddy diffusivity
€, 4.10“3 m2/sec = 40 cmzfsec. This is well within the range of
field data in the sea. Kullenberg (37) has carried out extensive
measurements of vertical diffusion in shallow waters. For a layer

of 14m depth, with almost non-existing stratification

C% %% =2.2 x 10_‘6 m_l, i.e., total density difference over the
depth 0.03 %ohe found a mean e, = 60 cmz/sec, ranging between 50 and
110 cmzlsec. These values are consistent with (3.25) provided the

mean velocity was about 0.10 - 0.20 m/sec. Indeed, the observed

current shear was 4.1 x 10_2 secnl; for a linear velocity profile,
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the velocity at 10m depth (where the dye was injected) would then be
approximately 0.16 m/sec. A summary of measurements in deeper waters is
presented in (36). In surface layers of up to 200m

thickness, values of Ez up to 100 cmz/sec have been reported. Much
smaller values have also been reported, apparently due to significant
stratification over such large layer thickmesses. Values around

100 cm2/sec were found for-% %g ﬂdO_G m_1

s i.e., a density difference
of 0.010/00 over 10m, negligible when compared to the density dis-
continuities considered in the present two-layer discretization.
Further, the value 100 cmZ/sec is proposed as typical for a well-mixed
upper layer of 200 ft (= 60 meters) thickness. This is consistent
with (3.25) provided the mean velocity in the layer is about 0.04 m/sec
(velocity magnitudes were not given).

An altermative way of expressing the vertical eddy diffusivity is

in terms of representative vertical eddy characteristics, as was done

for the horizontal exchange. Thus, one may write (16):

~

e, =W Lz (3.26)

where ; is the r.m.s. vertical velocity fluctuation and Lz is the

vertical length scale. As has already been indicated in Section 3.2,
Lz is of the order of 0.08 to 0.10 of the layver depth. The vertical
velocity fluctuations are generally smaller than the horizontal ones;
according to (91), w/u = 0,5. Applying for u the value of one tenth

of the mean velocity, commonly used for shear flows, one finally

obtains from (3.26):
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e, * 0.05 Ux0.08H=46.10"07H

in agreement with (3.25).

In conclusion, it appears that Equation (3.25) gives a
reasonable approximation to the vertical eddy diffusivity. When this
expression is substituted in Equatioms (3.22), the dispersion coeffi-
cients are only related to the mean velocities and the layer thickness,
which are the simplest flow characteristics in a layered system. of
course, 1n (3.25) the magnitude of the velocity vector should be used
for U. Tn this formula the effect of wind is only implicitly taken into
account, i.e., through its contribution to the layer velocity. A
discussion of vertical exchange caused primarily by the wind can be
found in (85). Finally, waves may significantly affect the vertical
diffusion near the sea surface. Measurements for low to moderate sea

states have resulted in the empirical formula (36) €, g~ 0.02 HWZ/Tw

s
for the value cf Ez at the surface, where Hw is the wave height and
T, the wave period. Thus, a 3 foot wave would imply €5 ™ 50-%0 cm2/
sec. This is of the same order of magnitude as the average values
of €, for the top layer discussed earlier. Therefore, moderate waves

may be considered as a factor justifying a uniform distribution of the

diffusion coefficient over the top layer thickness.
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CHAPTER 4

INTERFACTAL TRANSPORT

4.1 Description of the Phenomenon

The transport of material through the iInterface separating two lay-
ers constitutes in the model the only link between them. If such trans-
port is absent, any quantity introduced into a layer will be simply
dispersed within the layer, under the appropriate circulation pattern.
When the interface is identified with a strong density gradient
(eg. the thermocline in oceans or lakes, or an atmospheric inversion in
the atmosphere), it has been common practice in the past to neglect any
transport through it, on the grounds that it is very small. An addi-
tional reason has probably been the difficulty of quantifying this
transport. Even though a density gradient does, indeed, have an adverse
effect on the quantity of the material being transferred between adja-
cent layers, this quantity may not always be negligibly small, and
its contribution may be significant over the large length scales
characteristic of coastal areas. In the case where the constituent
has some vertical mobility, e.g. settling velocity, neglecting the
interfacial transport is clearly unacceptable.

Focusing on the two-layer system, which has been formulated in
detail in Chapter 2, we may recall that the rate of transport of a

constituent through the interface is expressed as:

c1+c2

U = W~ ¥ 3

) (4.1)

+ a(c2 - cl

-73-



where Q21 ig considered positive when the overall transfer is from
layer 2 (bottom) to layer 1 (top). The "settling velocity" v is a
characteristic of the constituent under congideration and will be
supposedly known. For example, for fine non-flocculating suspended
sediments it may be determined from Stoke's law. In this chapter
the physical meaning of v, and O is discussed and a quantification of
them is attempted.

Neglecting settling, the interfacial transport of a neutrally

buoyant constituent 1s written as:

) | (4.2)

As already indicated in Section 2.1, the first term of Equation (4.2)
expresses the transport associated with the relative vertical motion
of the interface and the neighboring water particles, while the second
term represents diffusive flux through the interface, associated with
the concentration difference between the layers. Thus, the former
involves a net water flow across the interface, while the latter does
not.

It is well kpnown that a turbulent layer flowing in relatively
quiescent ambient water causes "erosion'" or "entrainment" of the
adjacent fluid, that is, a net mass flux from it. The term entrainment
is most familiar in jet theory, where the "entrainment velocity",
quantifying the intensity of this mass flux, is considered proportional

to some characteristic jet veloeity (33). In a lake or in the ocean
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a strong wind stress producing a high flow welocity in the top layer
causes entrainment of the lower layer and erosion (deepening) of

the thermocline (67). 1In the case of & jet the entrainment process
need not be associated with a density difference, since a jet is
easily identified because of its high momentum relative to the am-
bient water. In large water bodies, however, the density "discontin-
uity" may actually define the layer, as is the case in the present
work.

The mechanism of erosion of a density interface has been examined
mostly experimentally (15,52,79) and mechanistically explained by
Pedersen (66). The turbulence in one of the layvers causes a system
of irregular interfacial cusps. Turbulent eddies appear to scour
the interface by detaching wisps or streamers from the crests of
the disturbances and rapidly removing them from the vicinity of the
interface and diffusing them within the turbulent layer. Thus, some
of the non-turbulent fluid is being swept away from a cusp and becomes
entrained into the turbulent layer. This mixing process occurs in
bursts and, according to (15), a point at the interface may be subject
to one such "event" about every 100 seconds. Evidently, this type of
mixing is a one-way transport of water from the non-turbulent to the
turbulent fluid. However, when both layers are turbulent, a two-way
transport has to take place, the interface being eroded by eddies
coming from both sides. According to Turner (79), the events causing
removal of fluid from the interfacial cusps are rare enough,so that

they can be considered statistically independent, as experimental
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evidence also indicates.

Let us consider two turbulent layers, moving at arbiltrary
velocities (Figure 4.1). Denote by f,, and m 5 the volume rates (per
unit projected area) of transport of water through the interface from
layer 2 to 1 and from 1 to 2, respectively. The net volume rate
moving through the interface can then be expressed as their difference.

This net rate has been identified as the "entrainment” velocity in

Section 2.1, i.e.

= - 4.

Ve T 21 T 12 (4.3
Consider now a constituent having concentrations g and Cy in layers 1
and 2, respectively. Arguing that the wisps being removed from each
layer and being incorporated into the other contain these concentra-
tions, we may write for the met transport from layer 2 to layer 1 the

following expression:
=m,,C, — M ,C (5.4)

This can be easily rewritten as:

c.tc m, . +m
1 72 21 12
) 7t 5 (c2 - cl) (4.5)

= (m,, - m

Q9 21

By comparing Equations (4.3) and (4.2) and using Equation (4.3) it

is seen that
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Figure 4.2 Experimental Results of Lofquist, Replotted in (7)
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" =_]Lg.__.._.2_!‘. (4.6)

Thus, the Interfacial transport rate is simply expressed as the
net entrainment rate times the average concentration of the layers
plus an average entrainment rate times the difference in layer concen-
trations. When one of the layers (say, layer 2) is non-turbulent,

Equation (4.5) or its equivalent Equation (4.4) reduces to
=m,.,C (4.7a)

which is consistent with the visualization of the mixing process as
a one-way transport in this case. When both layers have identical
characteristics, it is My = My, = E} and the transport rate is ex-

pressed as:
+
=1 - ) =ale, - o) (4.7b)

In this case there is no net water movement through the interface,
which is a common assumption for hydrodynamic models at steady state;
however, transfer of matter through the interface dees cccur, and it
may be significant if the concentration difference between the layers
is large.

The problem of relating the entrainment rates to the structure
of the turbulence, let alone the mean flow characteristics, remains

unsolved (67). In the next section a review of relevant studies is
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made in an attempt to arrive at reasonably general quantitative

expressions for the interfacial transport processes.

4.2 Review of Related VWork

Several experimental and semi-empirical studies have been conduc-
ted in the past concerning mass traansport in stratified systems. Most
of the information available at present comes from simple laboratory
experiments made under horizontally one-dimensional flow conditions.
However, the various investigators have often been using different
length and velocity scales, so that it is quite difficult to compare
quantitatively their results. In additiom, the applicability of
some of the results in a real water body is doubtful, due to the
particular experimental conditions.

Experiments on a two-layer system were made by Turmer (78), who
induced turbulence in one of the layers by means of an oscillating
grid and measured the rate of thickening of the layer due to entrain-
ment. He used as length () and velocity (U) scales those associated
with the grid turbulence and hence dependent on the mesh size and
stirring frequency. His results showed a different functional rela-
tion of the entrainment velocity to the overall Richardson number,
depending on whether the density stratification was caused by temper-

ature or salinity. Thus,
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we/U e« Rio (5alt) (4.8a)
w /U = RiT (Heat) (4.8b)
e o -
for
g A %
Ri = — B >1
(o] U2

It may be argued on dimensional grounds (78), that three non-
dimensional parameters may, in general, affect the interfacial
transport process. In addition to the Richardson number, these are

the Reynolds number

Re = v , Vv = kinematic viscosity

v

and the Peclet number

Pe = =2 , k = molecular diffusivity of substance

As discussed in (78) and (15), the effect of molecular diffusion

for low Peclet numbers (Pe < 200) may account, at least qualitatively,
for the observed difference between (4.8a) and (4.8b). Long (49),
however, has attributed this difference to erroneous interpretation
of earlier experimental results and accepts (4.8b) as fundamental.

Apart from the fact that grid turbulence experiments do not seem
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directly extendable to natural coastal waters (where most of the turbu-
lent energy is associated with shear), the latter are normally charac-
terized by high Reynolds numbers. In fully established turbulent

flows the effect of the Reynolds number is traditionally considered
unimportant. A high Reynolds number implies a high Peclet aumber,

too, since in most cases v »> k. Therefore, the only parameter to be
considered in practical cases is the Richardson number.

Turner's experiments have made clear that, in the absence of mean
flow, the entrainment rate is essentially proportional to the turbulent
intensity of the corresponding layer near the interface. When both
layers were stirred at the same frequency, the interface remained
fixed in the centre. When stirring was unsymmetrical, the interface
tended to move away from the region of more vigorous stirring.

When a mean flow is present in a layer, the turbulent intensity
is often considered proportional to the mean velocity. Experiments
with mean flow have been mostly carried out with one layer quiescent.
By measuring the rate of thickening of the turbulent layer, the

following relation was found:

w /U = c/Ri (4.9)
e o
where
géQH
Ri = -_Q_.._
=2
© U

H being the layer depth and U its mean velocity,
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Early experimental investigations by Ellison and Turmer (19) on
a surface jet flowing over heavier fluid and on a salt water layer
flowing under fresh water, both on a sloping chamnel, established
the validity of Equation (4.9) with e¢=2 5 x 10-3. However, their
overall Richardson number was less than unity, which is not common in
natural stably stratified waters. Lofquist (46) experimented on a
salty layer flowing under quiet fresh water and found a dependence on
the densimetric Froude number, but not on the Reynolds number. His
results were replotted in ( 7) vs. the Richardson number, Ri = l/Fr2,
and presented as Figure 4.2. This in&icates a value of c v 10-3.

The hydraulic radius was used instead of the layer depth, to account
for the limited width of the channel.

Later, XKato and Phillips (35) determined experimentally the rate
of motion of the interface associated with a shear stress applied on
the surface of an initially linearly stratified fluid. Using the
shear velocity at the surface, Us, as their velocity scale, they found
a value of ¢ ~ 2.5 (Figure 4.3). The layer-average velocity was
observed to be about half the velocity of the screen, with which the
surface stress was achieved. From the given measurements of this
stress, it follows (49) that U ~ 10 Us' Thus, the comstant ¢ of
Equation (4.9) is found to be 2.5 x lOHB, in reascnable agreement with
Lofquist's value.

However, the above experiment is not really representative of a

two-laver system, because of the initial linear stratification (which

continues to be maintained below the interface). Wu (90) studied the
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Figure 4.4 Experimental Results of Moore and Long (52)
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entrainment due to wind acting on the free surface of a two-layer sys-
tem. Using the same velocity scale as Kato and Phillips, he concluded
that ¢ = 0.234, i.e., an order of magnitude smaller than before. He
suggested that the discrepancy may be due to different velocity pro-
files in the two cases. In his experiments, there was a significant
countercurrent over the lower 3/5 of the top layer and there was no
net overall velocity. This countercurrent was cobserved to be about
three times the surface friction velocity. The velocity scale US
used by Wu was found by applying a reduction factor of 0,685 to this
friction velocity. If we use in Equation (4.9) the velocity of the
countercurrent, U = 3 US/0.685 = 4.38 US, which is adjacent to the
interface, the coefficient ¢ becomes equal to 2.7 x 10_3, in close
agreement with the previous results. Wu's results were later con-
firmed in Delft ( 7).

Recently, Hansen (25) carried out a theoretical investigation
on the rate of deepening of the surface layer of a small lake due to
wind stress. For moderate to large times, the balance between surface
stress and pressure forces yielded Equation (4.9) with ¢ = 2.36,
which is essentially the same as Kato and Phillips' result. It also
agrees well with Lofquist's data slightly modified by Hansen.

Finally, Long (50), in modeling a two-layer estuary with a deep
quiescent lower layer and using the r.m.s. turbulent velocity 5 as
velocity scale, conleuwdes that ¢ = 0.1, based on some of his owm

theoretical considerations (49). He subsequently argues that U is

of the same order of magnitude as the mean layer velocity in this
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case, although certainly smaller. It may be seen that a ratio of
ﬁ/ﬁ = 4 reduces the coefficient ¢ to the order of the values found
by the previous investigators.

In conclusion, there seems to be agreement on the validity of
Equation (4.9) for expressing the one-way interfacial transport,
where the value of ¢ is of the order of 10-3. It 15 worth noticing
that the quantity ﬁalH is proportiomal to the rate of change of

turbulent kinetic energy in the layer (e). By rewriting Equation (4.9)

as

o e
e Ty (4.10)
g 0 H g 0

one may view entrainment as the result of consumption of part of the
turbulent kinetic energy for shifting the level of the density
discontinuity, thereby altering the potential energy of the system.
The relation of entrainment to the energy characteristics of the
two-layer system has long been recognized and examined in most studies
on the subject. Long (49), in particular, proceeds in using energy
arguments in an effort to offer a unified view of experiments with
“and without shear.

So far, the quantification of one-way transport, from a gquiescent
to a flowing turbulent layer, has been examined. At the other ex~
treme, in the case of a counterflow, the interface must remain fixed,
because of symmetry. However, interfacial transfer of properties

does occur. This problem was experimentally investigated by Moore
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and Long (52), who measured the turbulent buoyancy flux q = w'p' in
one-dimensional counterflow and proposed the empirical relatiom

(Figure 4.4)

i3  g.107 (4.11)
- [
AUAD Rio
where . éQ .
(802

where AU is the velocity difference, double each layer's velocity U and
h is the total depth, double each layer's depth H.

Equation (4.11) may be rewritten:

o - 8.107% 2y
1 e %f—zﬂ/(au)z

Ap

Since Ap is here the "concentration" differemce, comparison with

Equation (2.7) yields

8.107%: 2T _

g hp H/ (U2
P

8,10 AL (4.12)

r =

o=z
5

where Rio iz based on each layer's depth. By comparing Equation
(4.12) to Equatiom (4.6), and since W, = Wy due to symmetry, we

obtain
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This is similar to the result found earlier for the entrainment rate
when only one-way transport occurs. It is seen that the agreement in
the coefficient ¢ is very good and its value around 10—3 appears well
established.

An alternative way of expressing the diffusive flux of a sub-
stance is by using the concept of eddy diffusion coefficient, éssuming
Fickian behavior. This coefficient is widely used in homogeneous
flows and was discussed in Chapter 3. In continuously stratified
flows the decrease of vertical turbulent fluxes has been deseribed
by a reduction of the vertical diffusion coefficient and its
dependence on the density gradient has been the subject of several
investigations (7).

In nature there is always a zone of certain thickness over which
the density change takes place, under even the strongest stratification.
Despite our two-layer idealization, the diffusion coefficient concept
could still be used, provided there was some knowledge of the width
of the transition zone. In two-layer counterflow experiments this
has been found to be approximately 0.08 times the total depth (48),
or 0.16 times one layer's depth, for a wide range of the overall
Richardson number (2 to 120).

In stirring grid experiments (15) it was also concluded that the

thickness of the interface zone is independent of Rio in the range
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4 to 1500 and equals 1.5 times the turbulence length scale {(for high
Peclet numbers). Since this length scale is of the order.of 1/10 of
the layer depth (see Chapter 3), the width of the zone comes to be
about 0.15 times the layer depth, in close agreement with the pre-
vious value. This would imply that a thermocline at 10m from the
surface will have a minimum thickness of about 1.5 meters. This is
of the order of observed values, although natural conditioms are
certainly not as ideal as in laboratory experiments.

To quantify the vertical eddy diffusivity in the region of the
interface, resort can be made again to the theory of locally isotroplc
turbulence (see Chapter 3). Arguing that eddies larger than a certain
critical size cannot take part in the vertical mass transfer, Osmidov
(62) obtains as a maximum value for the vertical diffusivity,

effective through a density gradient

4P
€2,i° B o0 (4.13)
D 9z
where ¢y v 0(0.1)
and e the rate of energy input into the system.

Using a typical value of e = 10—2 cmz/sec"3 one obtains

-8 _ 107t
1o
p az

(cmzfsec) (4.14)

9

where-%-%% has to be given in m—l.
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Expression (4.14) has been, in fact, proposed (36) as the statistically

A
best fit to available data in stratified regions. For ??'” 3°/00,

taking place over a 1.5 meters distance, eg. (4.14) yields:

1074

2
L = 0.05 cm /sec
z,1 2.10—3

m
H4

Observed values of the effective vertical diffusivity in the
. . ] 2
region of the thermocline in the oceans range below 1 em” /sec to

0.01 cmzlsec (56). Using (4.14), the interfacial diffusive flux may

be written
- (¢ 8¢ =_1_0.:E§£
qi €, 3z°-h 1 3dp oz
1 =
o 32

or, considering the concentration and density gradients taking place

over the same thickness:

-8
=10 Ae (4.15)

U=
o

By comparison with Equation (2.7) and (4.12), it is seen that

1078 1073

%? RiO

For U ~ 0(0.10 m/sec)
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and % noQ (10"3)

one obtains Rio'L 0(10)

and 0&”«*0(10“5 m/sec).

This seemingly small value of o is, nevertheless, of the order
of settling velocities of fine suspended particles, and its contribu-
tion becomes significant over relatively large length and time scales,
especially when multiplied by a large concentration difference.

It is worth mentioning here that, despite its small value,
the effective diffusivity of 0.05 cmzlsec found earlier is still
several orders of magnitude larger than molecular diffusion coefficients
of most substances. For example, the molecular coefficient for salt
is barely 10.--5 cmzlsec. Certainly, in an actual two-layer system,
with a near-discontinuity in the profile of density and any other
constituent, the transport caused by molecular diffusion would be
significant. But, since in nature there is always a transition zone
of finite thickness, molecular effects tend to be unimportant and can

be safely neglected within the scope of the present work.

4.3 Generalizations and Conclusions

The experimental evidence discussed in the previous section

points out to the following expression for the one-way transport rate

from layer j to i:

10737

m., = i (4.16)
ji R .
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where ﬁi the mean velocity of layer i

and RiO the overall Richardson number of the two-layer system

When both layers are flowing at different velocities, the Richardson
number has to be expressed in terms of their relative velocity,
which controls the stability of the interface. In the general case
of a horizontally two-dimensional flow field the Richardson number
is defined in terms of the vector difference of the layer velocities.

Thus

RE = B —— (4.17)

The proper H to be used in this formula is not quite clear.
Experiments with both layers flowing do not exist except for the
symmetrical counterflow case where the layer thicknesses are the

3 in (4.16) was seen to be consistent when

same. The coefficient 10
one layer's depth is used in the definition of-Rio . When the two
layers have different thicknesses, their average can be used as a
reasonable value for H, This is consistent with considering the
velocity gradient taking place over the distance between the center
levels of the two layers.

Using Equations (4.3) and (4.16) we can now write for the

net entrainment rate between layers 1 and 2:
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167 (||~ |v,])
Ve T T T U2 ¢ - (4.18)
o

Similarly, from Equations (4.6} and (4.16) one obtains

-3
_ Mgty 207 (ol + D

& 2 5 Ri
O

(4.19)

where in both expressions Rio is given by (4.17). The use of absolute
values of the layer velocities in (4.18) and (4.19) is justified from
the fact that the interfacial transport is a scalar quantity and
consequently should not be affected by changes in the velocity
directions (apart from their effect on the stability of the system,

as expressed through the Richardson number). This is especially impor-
tant to realize in a two-dimensional flow field, where ﬁi and'ﬁ2 will,
in general, have different directions. In particular, when [ﬁi] =
|ﬁé|, irrespective of direction, there should be no net entrainment,
since it is difficult to accept a preferential motion either upwards
or downwards.

The above treatment essentially links the interfacial transport
process to the mean flows in the adjacent layers. This is not a bad
assumption for tide dominated flows which characterize cecastal waters
although, in general, interfacial transport may well exist when mean
flow is absent,as indicated by the stirring grid experiments.

The problem of properly describing the mechanisms of interfacial
transport is by no means solved. The quantitative expressions given
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above are believed to be as good as can be obtained at present from
the limited experience available from one~dimensional investigations.
Future research 1s undoubtedly needed in this area, and this will
certainly be no easy task. In the meanwhile, the sensitivity of

the two-layer dispersion solutions to the values of v, and o

may be examined, in order to assess how critical the correct specifica-
tion of interfacial mixing is in wvarious classes of problems. A

first step in this direction will follow in Chapter 6.
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CHAPTER 5

ANALYTICAL SOLUTIONS

The essential features of the phenomenon of dispersion in a two-
layer system can be best illustrated through analytical solutions.
However, such solutions can only be obtained under very simple flow
conditions. The simplest case which may be examined is the counter-
flow in an infinite domain, shown schematically in Figure 5.1. When
U. = U, the net entrainment at the interface vanishes, i.e,

1 2

W, T 0, according to Equation (4.18). Assuming the interface essen-

tially horizontal and consequently the layer depths constant, the one-

)

dimensional governing equations in this ideal case reduce to:

ac, ac, 8
—— - — . —
e + Ul . E 5 kCl +q (C2 Cl) + Rl (5.1a)
9%
2
362 BC2 3 C2
——— - - - ' -
5t U2 Sx E ; ) kC2 a (C2 Cl) + R2 (5.1b)
X
where C1 , are the layer integrated concentrations
»

R are the source terms
1,2
E is the common dispersion coefficient, assumed constant

k is the decay rate, and

o
! =4 where o the proportionality constant for the

interfacial transport and H the layer thickness.

o
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Figure 5.1 Flow Field Assumed for Analytical Solutions
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Figure 5.2 Mass Balance at the Location of the Source
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Although the two equations are coupled in a very simple way,
obtaining closed form solutions in the general transient case with
arbitrary sources proves to be extremely difficult. In the following
sections, two practically important problems, that of an instantaneous

and that of a continuous injection in one of the layers, are examined.

5.1 1-D Instantaneous Injection

Of fundamental importance in all dispersion problems is the
"unit impulse response", i.e., the solution for a unit load intro-
duced instantaneously at a point, from which, by superposition,
further solutions, for more complicated loads, may be constructed.

In the particular counterflow situation one may consider a quantity
M being introduced instantaneoﬁsly in one of the layers, séy the

top, at x = 0. For the sake of generality, the solution will be
developed for Ul # UZ’ arguing that the net entrainment w_ can still
be neglected, provided the velocity magnitudes are mot much different.

Since in stably stratified systems the interfacial transport
is generally small and since the material is introduced only in layer
1, it will be C, << Cl for sufficiently small times. Equations

2
{(5.1a,b) may then be simplified as follows:

3c, 3c, azc1

—_ - - t

Lru gt-x — (a'+K)C, + M §(t) §(x) (5.2a)
ac, ac, 3202

—— = - L} T

5t U2 . E axz (o +k)C2 + o Cl {5.2b)
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Equation (5.2a) contains now only C. and its solution is well known

1
(26):
M by’ ye] (5.3)
C, = exp[- ——— - (@' + k)¢t 3.3
1 JmmEr x 4LEL

valid for small times.

Introducing this expression to (5.2b):

3c, 3c, azc2
e Yam TPz T @G
ox
2
' 2 xU U
+ M exp {- éﬁt + 2E1 - 4% t - (a' + kK)t} {(5.4)
Y4TTEL

This may be solved by use of the Laplace transform (t > s 02 +>v).

The transformed equation is { ):

[ X Ul2
2 ' xU. | exp|- s+o ' tkt ——
sy - U2 %1-= E g—%-—(a'+k)y + 24 exp EE; £ - SE
% dx 2/E //r' u,°
T —_
s+a'+kt A
or
g 2
xUl |x[ S+a'+k+‘—L“
a'm P2 T VE 4E
Ey" + Uy' ~ (a'+kt+s)y = - (5.5)

2vE / U 2
1
1 —_—

This is an ordinary linear differential equation of second order.

The corresponding homogeneous equation is
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" L ' -
Ey + Uzy (a' + k + s)y 0

with characteristic:

Em2+U2w-(a'+k+s)=

This has two real roots

I
-u, v U§+4E(a'+k+s)

f X
+a' + k+ 55

r = 2 =_.-.g+.._.].'_
1,2 2E 2E — JE 4E
Therefore, the homogeneous solution is:
xU U xU U
2 2 2 p. 4 2
vy, = A, exp - =% 3+ L fota '+t 2 |+ Ay exp (- 5o - Y staldkd go-
h 1 2E JE 4E 2 2E JE 4E
(5.6)
Requiring that the solution be finite (indeed, tend to zero) as
x + 4 =, it is seen that
Al =0 for x > 0
and
A, =0 for x < 0
2 =
To find now a particular solution of Equation (5.5) for x > 0, set:
xUl U12
y_ = A, exp |5 -~ — [sto'dkt o 5.7
p 1 2E JﬁE 4E

The value of 11 is obtained by substituting this expression in (5.5):

A o= . (5.7a)

1
2(U.4U )./s+a +k+ L s+ ! —)
1 72 &

AE
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Finally, to find a particular solution for x £ 0, set

XUy oy / U,?
—_ s ]
yp = lz exp ( Tﬁf_+ 7 s+o'+k + E (5.8)

which, by substitution in (5.5) yields:

oM
AZ - _ (5.8a)
U, % . ¢ U,
//_ ' 1 e + _l;.+ 3 )
2(U1+U2) g+o e + iE { vV sta A3 v

By combining (5.6), (5.7) and (5.8), the general solution is obtained, as

follows,
*Us X &)
- - .. [}
y = A, exp ( - ) exp ( JEISM&+——4E )
xU . U
1 X 1
1 exp () exp(~- —=ysta'+k +
+ 2(ua+g 3 - /R 4% for x 20 (5.9a)
1 2 U12 / Ulz Ul
1 - ¥ & 4
yb+a +He+ iE {ys+o ' +k+ iE 5 )
xU2 x U2
= - ———— —_— ]
y = A exp (- 52) exP(/g sta'+k + =)

xUl x U, 2
exp(-ﬁ) exp( N5 s+a'+k + H

a'M

2(U +0,) 4 e U7 U
S'HI"H{+4—( S'H]."Ht-ai—'l'—

E

for x £ 0 (5.9b)

To deternine the values of the constants Al and AZ’ the two branches of

the solution have to be matched at x = 0. The concentration is continuous
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at x = 0 and, since there is no source at this point, the first derivative

alsc has to be continuous. These properties also hold for the transformed

variable y.
The first conditionm, y| = yl , implies
o+
1
A-A, = o™ 1 + 1
/ / Uy !
T 4 - 1
2(U1+U2)s+a+k+ -I-o.-l-k+ Y Sw+k+4E+2/E
or,
a'™
A8 = @ 70, (s4" ) (5.10)
The second condition dy = dy implies
I ? dx dx ’ P
o- ot
U v,2
2.1 Y 2
Al( 2E+58ﬂ+k+4E)
u U, 2
1 1 1
i a'M (2F + A 540 ' +k+ I )
2(U;+0,) / T2 / U2
+Hi'Hk + — (Vs+ta'+k + —— 2¢EJ
11} U, 2
1 1 1
2 = T e
-4 (ﬁ+L s+a'+k+U2)+ oM e~ g T Y e
2V2E T &F 4F 2(U, 40U, 5 3
12 / ul Uy 0y
L] T —_—— o —
+o 'kt — (vsHo'Hok iE Z-E)
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or,

1 U22 U2
A < - =
s+a'+k + (A] AZ) 55t 0

(A —= E "

and, by using Eq. (5.10):

o'M U2
A A = (5.11)
172 5F
2
[ T
2(U +0,) vE (s+o'+k) vot+o'+k+ e

Solving the system of equations (5.10) and (5.11), the values of

Al and A2 are obtained:

] ] — —
O'.H( S‘l'a+k+5E+2'}E)

A, = (5.12a)

1
i

2(U_+U..) (s4a'+k) Voto'+k + —=—

1 72 4E

U2 U2
] ] — m —
a'™ ( J/s+a'He + AE v

A== (5.12b)

2 / U,2
2
[} ¥
2(U1+U2)(s+a +e) vVs+o'+k + e

After introducing the above into the expressions (5.9a,b) and rewriting

the factor (s+a'™+k) in the denominator as

/ U,z U, / u,> U,
' = Ll - 1
sto'+k = ( fs+a'+k + 5% 2‘5)( s+a+k4E+2,/E)

the final form of the solution in the transformed variables is:
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xU2 / Uzz
a'™ (- exp(- )exp(- '/_ sta'tl + Zp 4E )

+a+k+«-——— +a+k+——+——)
¢ 2E
xUl X U]_
exp(—==—exp( - —= Vs+ta'+k + 57 )
+ 2E /E 4E 1 forx 20 (5.13a)
U12 Ul2 U1
t .
Ysta'+k + — AE { ys+u'+k + in 2/ﬁ)

KUZ x f U?.z
exp(- —-*)exp(—'— s+a'+k + 5)

a'M YE 4E

2(U)+0,) / U22 U22 U,
o'k + 5= ( stk + 50 - —= )

4E WVE
xU U]_2
exp(5 )exp( «'E Ye+o'+k + 5= iE )

- } for x50 (5.13b)

U 2
ysto'+k + = 4E ( yYe+a'+k +

From Tables ( 73 ) , the inverse transform is found to be:

S i S ~(a'+ - + _
Cy 2(U1+U2) exp{-(a'tk) t}[-erfc AT erfe m]
a'M xH .t x=U.t
= ——— exp{-(a"+k)t}[erf - erf 1 3+ x20
2(0;+0,) JAET JiEt
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-x+U. t
a™ xHI, t

C, = =2 exp{-(a'+k)t}{erfc (- ) -efrc ]
2 2(Uy+,) JRET AET
= W exp{~-(a'+k)t}[ erf : - erf — ] ;+ x20
172 VALt v4Et
that is, for all x

a]M x+U. .t x—U t

C2 = m exp{-(cx'+k) t]‘[ erf ( } ~ erf ( 3] (5.14)
172 /4Et YaEt

The location X of the peak of the distribution can be found by differen-

tiation:
2 2
(xo+U2t) 2 (xo—ult)
exp - g 1o -1 =0
4MEC 4TEL
This yields

(xo+U2t)2 = (xo-ult)2

i.e.,

X, = 7 t (5.15)
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and the value of the peak concentration is:

U1+U2t
Cog = fﬁgi%—j exp{-(a'+k) t} erf( -—ji*—') (5.16)
1 72 v4EL

Therefore, the peak concentration at the bottom layer moves at a velocity

Ul-UZ , the direction being controlled by the relative magnitude of U1 and

2

U By comparing to the velocity Ul of the peak at the top layer (see Eq.

9°
5.3), 1t is seen that the bottom peak is moving much slower, since U1 and

U2 are assumed about equal. The functional form of 02 also indicates that
the distribution is symmetrical about the peak and very "diffuse" 1in
character, due to the presence of the glowly varying error functions. This
is, of course, explained physically by the distributed nature of the transfer

of material to the bottom layer through the interface,

In the particular case that U1 = U2 = U, it is

- oM (ot _Ut .
Cop = o1 exp{-(a’™+k)t} erf ( AEt) (5.17)

and X, = 0, that is, the highest concentration in the bottom layer remains
stationary at the position of the original source.

The above conclusions were based on the small time approximation
C2 << Cl' It is appropriate, at this point, to examine the time scale of

the validity of this assumption, which allows the simplification of the

original equations. An order of magnitude of the desired time scale can be

~104-



obtained from a restriction on the ratio 020/010’ although the two peak

concentrations do not occur at the same point. For small arguments (10)

_ 2 =T (=t xfm
erf X = Jr z (2nt+l)n!

Keeping only the leading term (n=0), Eq. (5.17) becomes approximately

Cop = GZUM exp{-(a+k) t} 2 U
/i JLEt

and therefore,

20 _ a'we/VATEE _ .,

C10 M/ VETEE

Requiring that 020/010 < 5% implies

t < 0.05/a? (5.18)

Bq. (5.18) indicates that the time scale of the validity of the approximate
solution increases in inverse proportion to a'. This could be intuitively
expected, since the smaller the diffusion through the interface, the

lower the concentrations in the bottom layer.
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5.2 1-D Continuous Injection

The steady-state solution under continuous release of a constituent
at a point is of great practical interest, since it reveals the kind of
impact of such sources as sewage outfalls or power plants, which operate,
more or less, on a continuous basis. The problem, in the case of counter-

flow, is described by the following set of equations:

dc, dzcl

_ - T -

U =Egz -k +a (C,-Cy) + Ry (5.19a)
dc, d%c,

-— —_— — —-— ' -

U4 =E 57 — k¢, - a'(G c)) (5.19b)

where Rl = m.8(x), and the other symbols have been defined in Eqs.

(5.1a,b). The layer velocities are assumed here exactly equal; this is
done for two reasons. First, neglecting the net entrainment associated
with even a small difference between Ul and U2 is not justified because of
the large time scale required for the system to reach steady state. Second,
by setting Ul = U2 = U the mathematical treatment is significantly
simplified, because odd order derivatives vanish, as will be seen shortly.

Solving Eq. (5.19a) for CZ’ and neglecting for the moment the source

term which will be treated later through boundary conditlons, one obtains:

1 dc, d201
= [a'H)C + U = - E 3 ] (5.20)

C2 =3

Substituting in (5.19b), an equation for C1 only is obtained:
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d*c . .d201
T - [2(0™HOE + U?)

E? o2+ k(2e'+K)e, =0 (5.21)

The corresponding characteristic 1s:

E?w* -[2(a"+k)E + U2Ju? + k(2a'+k) = 0O (5.22)
with roots:
2 2(a'+k)E + U? * /4o '2E2 + U* + 4(a +tkJEUZ
1,3 ° 7E2

These are both positive and, therefore, Eq. (5.22) has four real roots,

irl, tr3, where

c _ 1 “//i(a'+k)E + U2 + J4(a"+k)EUZ + 4a"“EZ + U°

1,3 ) (5.23)

The general solutiom of Eq. (5.21) is:

T.X -r.Xx r.X ~T.X
= 1 i 3 3
Cl Ale + Aze + A3e + Aae

where Al, AZ’ A3, A4 are constants to be specified through the boundary
conditions, which the layer concentrations and their derivatives have to
comply with.

As in Section 5.1, distinction must be made between the regioms x > 0

and x < 0 because of the exponential terms that grow without bound as
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| x| = .
~T . X -T.X
= 1 3 .
Cl Aze + Aae HEES 4
Cl Ale + ABe 7 X

Using these expressions in Eq. (5.

Consequently, the solution for C1 is:

(5.24)

1A

20}, one obtains for C,s

2 -r_X, .
- Er, JAe 3 };

- l 4 - - 2 _rlx T _
Cy = o {(a'+k Ur; - Er; YAje + (a'+k - Ur,
x20
{5.25)
= _-].'— 1 - 2 % 1 _ 2 rax .
Cy) = (o'+k + Ur, - Ery YA e + (a'+k +Ur, -Er, JAge }s
x50

For matching the sclutions at x

be satisfied:

0, the following conditions must

(5.26)

(5.27)

{i) Continuity of Clat x =0, i.e.
{C.) = {C,)
1 o= 1 o+
From (5.24)
Al + A3 = A2 + AA
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(ii) Due to the presence of the source in layer 1 at x = 0, the first
derivative of C1 is discontinuous at that point, Mass balance per

unit time over an infinitesimal length dx (Figure 5.2) implies:

Fout - Fin =n
dcl dc1
i.e. (ucl - E E)o+ - (UCl ~ E _é?)o— = m

and, taking into account (5.26), this yields:

dC1 dC1 o
o~ C&lo+ T E (5.28)

Using (5.24)
: =
rlAl + r3A3 - (-rlA2 - r3A4) =z
or
= m
rl(A1+A2) + r3(A3+ﬁ&) = E (5.29)

(iii) Continuity of C2 at x =0, 1.e.

(C = (Cz)0+ (5.30)

2)0—
from (5.25)

1] - 2 - [} _ 2 _ =
(a"+k Erl )(Al A2)+Ur1(A1+A2)+(a +e Er3 )(A3 A4)+Ur3(A3+A4) 0

(5.31)

-109-



(iv) Continuity of the first derivative of 82 at x = 0, since there is no

source in the bottom layer:

dc dc
2y = (2
o— o+

Differentiating (5.25), we obtain
LY 2 2 -
(a'+k Ery )rl(A1+A2) + Ury (Al A,)
t 2 2 - =
+ (o +l~:--Er3 )r3(A3+A4) + Ur3 (A3 Aa) 0 (5.33)

Solving the system of equations (5.27), (5.29), (5.31) and (5.33), the values

of Al, A2’ A3, A4 are found to be
Um m a'+k | ©? 2
A opriy 2.y T 7 7 2 ( + = - %) (5.34a)
1 2E (rl ¥q ) 2E(r1 ry )rl E E 3
1 2
A= tm n (T Ly (5.34b)

- +
z 2.p 2 2_, 2
2 2E (r1 ry ) 2E(r1 Ty )rl

Um m a'+k | U? 2
A= - - ( + = - r, ) (5. 34c)
3 2E2(r12—r32) 2E(r12—r32)r3

Um m a'+k y? 2
Ay = SRI(r. 2-7.2) 2.r 2 ( + o5 -1, ) (5.344)
4 2E (rl T, ) 2E(r1 Ty )r3 E E 1

Substitution in Eqs. (5.24) yields:
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_ Um -I'3X__-I X
¢, ZEz(rlz-f32) (e e )

* 2E(r12_’:32)r1r3 ( d'E+k + g_z )(r3e-r1x_rle-r3x)
* 2E(‘12‘$32)r113 (rlse_rSth3ae_rlx) for x 2 0
+ 2E(rl‘°--111'132)r1r3 ( a:E+k + %:-' ) (o™ 1 or )

m

T.X
+ 3e3_
—r 2
2E(r12 ry )rlr3

(r1 r33er3x) for x < 0

These can be written in a compact form as:

m a'+k |, U -1, |x| -1, x|
1 2E(r12—r32)rlr3 {« E + E2 )(r3e e )

P 3 |x|_ 2 -r, x|
+ e 3 rye 1 }

Um -X ]x] - |x|
R el 1
+ (sing x) TE (. ot D) (e e )
1 -3
r.r
and further simplified by multiplying the first term by.r o and using
173

the fact that

2 .2 _ k(20'+k)

1 '3 E2

The expression for C1 finally becomes
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L
. - o : (o +-k)rlr3 +.l lr.e
1 2(r12—r32) k(2a'+k) E 1

‘rslxlerE_rllxl)

m[rl+r3—(sign X) %ﬂ

-rg|x|_-rilx]
e S (3.3

where r,,r. are glven by Eq. (5.23).

1’73
Substituting this expression for C1 in Eq. (5.20) and after several

algebraic manipulations, the solution for C2 is obtained as follows:

t
o mr1r3

2" Zc(20"+Kk) (r; 2-1,7) (rje

C —r3|x|_r36—r1|x]) {5.36)
Eq. (5.36) shows that the distribution of C, is symmetrical about x = 0,
where its highest value is achieved. This would be also the case for Cl
in the absence of advection; indeed, Eq. (5.35) indicates that the only
distinction between x > 0 and x < 0 is assoclated with the appearance of
the velocity U. However, symmetry characterizes the bottom layer at any
advection rate and it is certainly due to the exactly equal and opposite
layer velocities.

The total mass present in each layer at steady state is of particular
interest. This can be obtained by integrating each concentration distri-

bution over x. Thus,

o +
Mi = J Cldx + J Cldx =
- 0
1
2{ m [ rlra(a ) + 1 1C fl._'fé )y - _Tizltfél__Gl,__lq}
2(r12~r32) k(20" +k) E 3 T 2E(r13—r32) rq Ty
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which reduces to

_ (a'"+k)m
Ml = __k(Za'-lk) (5.3
Similarly
o +
M2'= J Czdx + J Czdx =
- OO [s)
e, a'm T173 ( 1 T3 )
= ' 7w £ =
2k(2a'+Hk) T, 3 ry ry
i.e
- __a'm
Yy = xa™+) (5.38)

The total mass in the system is, of course

M=M +M

_ {a'+k)m a'm  m
1 2 k(20'+k) + k (5.39)

k(2a'+k)

as expected, since at steady state the rate of input m must be equal to the

total decay rate kM., Moreover, the ratioc of the two masses is:

M
2 _ o' _ 1
Ml T a'+k  1+k/a’ (5.40)

thatis, always less than unity and decreasing as the ratio of decay to

the interfacial diffusion coefficient increases.
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5.3 2-D Continuous Injection

Having examined the main features of the problem in the one-dimensional
case, it is desirable to obtain an analytical solution in a two-dimensional
flow field. This is easier attainable under steady state conditioms,
since the time variable is eliminated. The appropriate equations for

uniform counterflow U and isotropic dispersion E in both layers are:

ac, d%cy a%c;
= —_ - ' -

Ugs = E gz * E gy - kG +a'(CymCp) (5.41a)
3C, a%c, 8¢,

— — — — — ' -

Uox “E5xg tE P kC, - a'(Cy~C,) (5.41b)

The unavailability of boundary conditions along the x- or y-axes, which in
fact are part of the solution, still poses a serious difficulty in a
formal mathematical treatment. Iﬁ this section a heuristic approach is
undertaken for obtaining an approximate solution of Eqs. (5.4la,b) under a
continuous input m per unit time at (x=0, y=0) in the top layer. The
contribution of the longitudinal dispersion term is considered negligible
compared to the advection term in similar one-layer problems {26) and
therefore only transverse dispersion will be taken into account. Provided
the entrainment is small, the steady state solution for the top layer

should be very close to that of a single layer, i.e.

2 L3
¢, = —B— expl - ZEE - (“];k) x1 3 x>0 (5.42)
VATEUX

~114-



The above solution may be thought of as derived from the transient solution
of (5.51a) for a load mdt:

2
o~ ¥y '
= exp[ - - {(a'+k)t ]
1 YATEL 4Et

by replacing the time t by x/U, i.e. the distance travelled from the
source at x=0 to x=x divided by the velocity of travel.

Consider now a stripe of unit width in the bottom layer, parallel to
the y-axls (Figure 5.3). This is moving at a velocity U at the direction
of the negative x-axis. At each x-position it collects from the stripe

directly above it (in the top layer) an input of a’Cl per unit time--or
a'C
U

from a particular top layer stripe has then a certain distribution, as

per unit width, that is, for the whole stripe. Whatever comes down

given by Eq. (5.42), multiplied by %}n This distribution will continue
to expand at the same rate E while the stripe in the bottom layer moves
from x back to a certain position x. A particle released from the source
at x=0 has travelled a distance x in the top layer and them (x-x) in the
bottom layer. By analogy to Eq. (5.42), the contribution coming from x

of the top layer tc the steady-state concentration at X of the bottom layer

must be:
o m . v2u a'+k =
U X IE(en T u (R ]

YATEU(2%-%)

Therefore, taking into account contributions from all x:

+ o
1 2 ]
C - = o m expl - y U -2 e (2x-x) J1dx  (5.43)
ZyX = HE(2x=-%) U
-, UV4TEU (2x—%
min(o, %)
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(a) Top Layer

(h) Bottom Laver

Figure 5.3 Concentration Distributions in 2-D Counterflow Case
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The lower limit of integration is based on the following considerations:
if x 2 0, all x > x have a positive concentration C1 and give a contribu-
tion. However, if x < 0, contributions come only from x > 0, since
C1 = (0 for x < 0,according to Eq. (5.42a). Further, by substituting
z = 2x-%, the limits of integration become:

for x <0: x=0+2z=-X

for x>0 x=%>z=%

i.e., always z = |%i

The above integral may then be written:

& ' 2 '
02 z = J —O‘E—-—exp[ _%]_J__Ot.l';-k z]dz (5.44)
’ |§' 2Uv4nEUz z

It is evident from this equation that the bottom layer concentration
distribution is symmetrical about x = 0, as was the case in the one-

dimensional problem.
For the particular case that y = 0, that is, for the x-axis, the

integration (5.44) can be easily carried out. Dropping the overbar from x

and considering x > 0:

oo ] 1
02 = I —en . exp{ - a];k z)dz

x 2Uv4TEUZ

By setting aljkz = w , one obtains:
C. = 1 U CC'H]. J'm exp( UJz)d(l}
== [ -
+
2 uviek o Lo
otk
0 b4
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_ a'm. Jou T4k
C2 = ————— arfe ( T )

4UvE(a T+

Since the distribution is symmetrical about x = 0, we may write in

general
1
c, = —LB—— exfe ( % I ; for y = 0 (5.45)
4UVE (o T+k)

The presence of the complementary error function in the solution indicates
that the distribution in the bottom layer falls off rather rapldly with

distance from the source.

When y # 0, the integral of (5.44) is much more difficult to evaluate.
In general, a numerical integration scheme can be employed to obtain 02 at
certain points for given values of the parameters. The main purpose here
being to provide an idea of the behavior of the solution, an approximation
to the integral in terms of simple functions 1s desired. This can be
obtained by expanding the exponential term and keeping only the three

leading terms:

2 2 2 3 :
_¥yU ., _yUu 1.yU
exp( - 75 1 -5, 7 (4g;) (5.46)

This approximation will slightly overestimate the result, since the first
term neglected is negative, therefore it 1s conservative. Of course,

its validity is restricted to the case that
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Since 2z varies between |x| and + «, the above inequality is covered by

2

U .
Z%E]- <1 (5.47)

Introducing (5.46) in Eq. {5.44) yields:

o o' +k v . 1 _y*u?
C = J ———— exp( - z)[ 1 - +—*L2—2-]dz
2,x |x| 2U/ETEDZ U 4Ez 2 16E2z

a'm _yu ¥y u?
P L *+32r2 Iy

I
.
o |

where
I = 1 exp( - 0‘ z)d [ /_erfc fx
a ‘/E P '+k
[
as found earlier, and
- 1 2 _a'4k _ g o'tk
I = J 32 T e - T XD - 25T T
x|
® 1 a'+k _ 2 a'+k 2 a'+k
I, J' 573 exp{ - 0 z)dz = 377 exp( - 7 |x]) - 31 L
|X| 2 3[X|
2 a'l+k o'+t +k
= — {1 -2 |x|)exp(— |)+—( Y r
311{!3/2 U o
Substituting these expressions, the solution for C2 finally becomes:
t 2 4y 2
Czﬁ-Lerfc( /% [xPDI 1 - Y—M-f-ﬁ( ggk)) ] -
_4U¥E(a'+k)
t 2 ¥ 2
- exp( - Tk x])[ ( I :(Zg-‘-k) - l'%l-?d)] (5.48)
8EVREU[ x|
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Comparisons of all three analytical solutions derived in this Chapter
were made to results of the numerical model for verification purposes and

are presented in Chapter 9.
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CHAPTER 6

SENSITIVITY ANALYSIS

Irrespective of errors introduced in the mumerical computations,
an issue which is often not given the proper attention is that of
parameter or input uncertainty. No matter how accurate the solution
of the equations representing the mathematical abstraction to the
natural process is, it canm be no better in reality than the inputs
used to generate it.

In the dispersion problem the basic parameters of interest are the
velocity field, the dispersion coefficients, the decay and entrainment
coefficients. The values assigned to the parameters may be obtained
through theoretical considerations, field experiments, past exper-
ience, etc. There is always some uncertainty about the proper values
to be used in any particular problem. The question that arises is:

Is it worthwhile to resort to a highly accurate and expensive numerical
scheme when some of the relevant parameters are known, say, only
within an order of magnitude? The answer depends on the sensitivity of
the solution to the wvalue of the uncertain parameters.

The great practical importance of sensitivity analysis is that it
reveals how the solution changes relative to changes in the parameters.
By identifying the most critical parameters, the engineer can focus
his efforts on determining them as accurately as possible, while not

worrying too much about the remaining parameters.
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Systematic sensitivity analysis can be easily carried out when
an analytical solution exists. This happens under simple flow condi-
tions only. However, the conclusions on the relative importance of
the various parameters should be essentially the same in wore
complicated situations. Numerical experimentation can, of course,
be used, but this is far more costly and less revealing fhan the
simple analytical expressions.

In the following sections, the parameter sensitivity of the
solution to some basic one and two-layer dispersion problems is
studied. In particular, the semsitivity of the two most significant
features of the solution i.e., the peak concentration and the extent
(length, width) of the plume, is examined. With respect to the latter,
since theoretically the concentration goes to zero only at an infinite
distance, two definitions can be used: The "relative" extent of
the plume is defined such that the concentration at the edge is a
certain percentage (say 1% or 5%) of the peak concentration. The
"absolute" extent is defined such that the concentration at the edge
is a certain prescribed value; for example that imposed by existing

environmental standards.

6.1 One-Dimensional One-Layer Flow

6.1.1 Instantaneous Source

The solution to the convection-diffusion equation for an

instantaneous source of stremgth M is

2
cC = ¥ exp [- i&i%%l_ - kt] (6.1)
Y 47Et
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The peak concentration at time & is

exp (-kt) (6.2)
Y4TEL

It is seen that the magnitude of C0 1s independent of the velocity,
which, however, determines the location of the peak (at x=Ut).

Differentiating with respect to the dispersion coefficient yields

Ef.?, - _ Mexp(-kt) _ _Eg
OF 253 2 o 2E
or,
5C
o _ _13E
C, B 2 E (6.3)

where & denotes a differential change in magnitude. Equation (6.3)
implies that a 10% increase in E would cause a 5% decrease in the peak
concentration and indicates a moderate sensitivity of CO to E.

The distribution (6.1) is symmetrical about x=Ut. As shown in

Figure 6.1, the half-length of the plume at that time can be defined as

either i) Lr, where C BC0 (f << 1, comstant) or

C (prescribed)

ii) La’ where C

In the former case Lr can be found from

L 2
r

P | “zgc) =8

This leads to
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Table 6.1

Parameter Sensitivity for 1-D Instantanecus Injection

- 8Y , 6E 8y , sk
Quantity Y Y= Y/ E 5 / X
M
C0 exp (-kt) - %‘ -kt
Y4TEL
Lr ¥ 4Etln %- -% 0
1 kt* kt*
L % _kt® _ o ktr
maxL, /faEt*(z + R T4 oker T+ Zkex

Note: t* is given by Equation (6.7)

Figure 6.1 Typical Distribution after an Instantaneous

Injection in 1-D Flow
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L = Jume tnl | (6.4)

8

It is seen that Lr depends only on E and the choice of b, Furthermore,

oL L
{6.5)
8Ly _ 1k
L 2 E
T

indicating that the relative plume length would increase at half the

rate of an increase of E.

In a similar way, one finds that

/ 4Et Rn ,/4Et(ﬂvn - kt) (6.6)

C/anEt

which, of course, has meaning only when C0 > C. Of interest is the
maximum value that La will ever reach, This can be found by
differentiating La (or Laz) with respect to time and setting the

derivative equal to zero. Thus, one obtains:

fn ——t— = 2+ 2kt (6.7)
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which, unfortunately, has to be solved for the time to maxLa by
a trial and error procedure. Substituting (6.7) in Equation (6.6)

yields:
maxl = v 4Et(l-+ kt) (6.8)
a 2 '

In the particular case of no decay, Equation (6.7) can be directly

solved for t, giving

/e .M
mAX  oTVATE

and consequently, from Equation (6.8)

maxl = /= (6.8a)

meC

which is independent of both E and U and is only related to the value

of C.

In the more general case, when k > 0, the sensitivity of the
maximum length of the cloud to the values of dispersion and decay
coefficients can be found by employing partial differentiation on
Equation (6.6) and using Equation (6.7). The resulting expressions,
along with the previous senmsitivity results, are summarized in

Table 6.1.

6.1.2 Continuous Source

The steady-state solution for a continuous inmput m (units/sec)

at x = 0 is (26):
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C = B expli(u ¥ S+ 4]

+ 4KE
where
- for downstream (x > 0)
+ for upstream (x < 0)

The peak value occurs at x = 0;

jii

C°=/Erz+4kE

Employing partial differentiation;

8 _1__1__ &
CO 2 - QE_ E
4kF
U2
C _  _wE _ su
T
4kE

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

Comparing (6.11) to (6.3) shows that the peak concentration is

less semsitive to changes in E for a continuous source than for an

instantaneous injection, As the non-dimensional parameter UzldkE

increases, the peak tends to become increasingly sensitive to the

velocity magnitude and less sensitive to the dispersion coefficlent.
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This should be expected,since & large value of U2/4kE indicates
that the process is advection-dominated.
For typical values in estuaries and coastal waters:

- 0.10 m/sec, E = 10 nZ/sec, k = 107> sec™® (v 1 day )

U2/4kE ~ 25
Then

8 _ _25 8

C 26 U
s ]

% __1 &

G 26 E
[}

which indicates that advection is the critical parameter and a
misjudgement in the value of the dispersion coefficient has a
negligible effect. This insensitivity to even an order of magnitude
change in the dispersion coefficient in cases of continuous releases
has been observed in the past (30).

The distribution (6.9) 1s illustrated in Figure 6.2. The
downstrean length of the plume Ldr’ where C = BCO, can be determined

from
exp[——— U -/ U° + 4kE] = B

which vields

L - 2E 1n B (6-1‘5)

dr
U —y U2 + 4KE
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Table 6.2

Parameter Sensitivity for 1-D Continuous Source

Quantity Y = (34 / SE 8y / sU QY_/ 8k

Y Y E Y U ¥ k

m 1.1 11
C - T _ g - =
o 5 2 o T+o 2 140
VG +4KkE
1 2E 1n B 1+ 1 1 1 1 1
dr 2 - l+0- 2 _
tev UH4KE Vo (1+0) - (1+0) Yo (1+0) - (1+0)
Lda Eq. (6.18) Eq. (6.19) Eq. (6.20)

* 2
Note: ¢ = U /4kE

Figure 6.2 Typical Steady State Distribution for a
Continuous Source in 1-D Flow
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pifferentiating with respect to E:

$Lyr 1 SE

=[1+ 5 1
L, 2 7 E (6.15)
U
V/;kE E) - O+

Moreover, differentiating with respect to U:

6Ldr - 1 su

Lar v v (6.16)

1+%E

and with respect to k:

1 sk 6.17)

o2 k
-+ o)

Bt

dr u_.

AkE(l * ZRE ZKE

Evidently, the sensitivity of the plume length depends again on the
value of UzlékE. For large values of this non-dimensional parameter,
the coefficients of 8E/E and SU/U tend to zero and unity, respective-
ly. For U2/4kE + 0, these coefficients tend to 1/2 and zero,
respectively. A gimilar analysis can be carried out for the upstream
length of the plume, Lur’ which is, nevertheless, always smaller

than L becoming equal when U = 0.

dr?
The absolute downstream length, defined by a prescribed

concentration C, is determined from

L
= n d
c= exp[ 2

/u% + 5kE %

(U - U2 + 4kE)]
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2E ' U2 + 4kE

L, = In (6.18)

da m
v -/ U7 + 4kE

Partial differentiation yields

GLd (14 1 L1 GE
2“/5 v? 52 2 oA
—'—'_(1+ kE)—(1+ Z'EE) 1+ -—_— )l ( )
(6.19)
Lga I N 1 | 8U
L U (6.20)
da /4 4+ ﬁgg‘ 1+ 4kE) In ( A+ m——J
0 U

As the value of the logarithm is always negative and usually large in

m
VAKE+UZ

meaning), Equations (6.19) and (6.:20) indicate that Lda is less

magnitude (because C << = C_ for the analysis to have some

gsengitive to E and U than L Another non-dimensional parameter

dr’
enters here, namely CU/m. A very small value of CU/m, associated
with a low prescribed level C, makes (6.19) and (6.20) approach
(6.15) and (6.16), respectively,

The sensitivity results obtained in this section for the case

of a continuous injection are summarized in Table 6.2 and presented

graphically in Figure 6.3.
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Figure 6.3 Sensitivity Curves for 1-D Continuous Source
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6.2 Two-Dimensional One-Layer Flow

6.2.1 Instantaneous Source

The concentration distribution for an instantaneous source

of strength M in a two-dimensional flow field is given by:

2 2
M _{x-ue)”  (y-ve)©
exp{ 4Ext éEyt kt] (6.21)

C=
Y4TE t VY4TE t
x ¥y

The peak concentration at time t is located at (x=Ut, y=Vt) and has

a magnitude, under isotropic conditions (Ex = Ey = E) of:
¢ = -2 exp(-kt) (6.22)
o A4TEt

It 1s seen that Co is independent of the velocity, which, neverthe-
less, defines its location, as in the one-dimensional case. The
distribution is symmetrical around the peak (Figure 6.4) and can

be expressed as:

2

T
¢ =c, exp (- ZEE) (6.23)

where r=0 refers to (x = Ut, vy = Vt}. The radius at which the
concentration drops to a certain fraction B of the peak is then

determined by

R_ =/ 4Et In 1 (6.24)

B

which is similar to (6.4). Partial differentiation of (6.22) and
(6.24) with respect to E and k reveals the sensitivity of the peak

and the cloud radius to these parameters, as tabulated in Table 6.3.
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Table 6.3

Parameter Sensitivity for 2-D Instantaneous Injection

Quantity Y = Sy , §E gy , 8k
Y Y E Y k
c M__ oxp(-kt) -1 Kkt
0 L4MEt

[ a1 1
R 4Et 1n 3 2 0

kt*

1  kt#*
1 + kt*

max R_ VAEt* (1 + kt*) 3 T+ Ko+

_1
2

Note: t* is given by Equation (6.26)

Figure 6.4 Typical Distribution after an
Instantaneous Injection in a

2-D Domain
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The radius at which the concentration drops to a prescribed

value C (< Co) can be found from:

2
C = exp(- T kt)
4mEt SFPYT ZEt
i.e.
= _—}j—--—
R = /4t (1n Treeg - KO (6.25)

To find the maximum area which will be subjected to concentrations
higher than C, partial differentiation with respect to time is used,
as in Sec., 6.1.1. The corresponding time has to satisfy the

following equation:

M —
In AmELE 1+ 2kt (6.26)

which has to be solved, in general, by a trial and error procedure.

In the case of no decay, Equation (6.26) is simplified to:

_ M
tlmax 4TeEC (6.26a)

Substitution in (6.25) yields

max R = v M

a mel

and consequently the maximum area is

(6.27)

&=

max A = T.max Ri =
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This is independent of amy of the flow characteristics and
depends only on the 30urce_strength and the choice of €. Of course,
the dispersion coefficient controls the time to max A, according
to (6.26a), while the location of the cloud at that time 1s
determined by the flow velocity. In a time-varying flow field the
average velocity during the time given by (6.26a) can be used.
Incidentally, sclving (6.27) for C and substituting in (6.25) allows
determination of the dispersion coefficient; this method has been
used in conjunction with observations of the visible radius of smoke
puffs in the atmosphere (64).

To determine the sensitivity of Ra at any time, one obtains

from Eq. (6.25):

SR

a_1 (1 - 1 ) SE {(6.28)
R, ? 1n —2 -kt F

4TELT
and
R 1 kt sk
R 2 M k (6.29)
a (In zopeg) 7kt

At the time of max Ra’ Equation (6.26) holds. Then,the above

expressions are simplified as follows:

5R
a,max _ % 1:3 & (10. 28a)
a,max

SR, .max 1kt 8k
a,max

The results of this section are summarized in Table 6.3.
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6.2.2 Continuous Source

The solution for a continuous source of strength m, assuming
the flow is along the x-axis and neglecting the contribution of

longitudinal dispersion, is (26):

m 2U kx
C=——exp(- %Eg'- Erﬂ (6.30)
Y4TEUx

valid for x > 0.

At the origin, the value of C is infinite, and hence there
will be no attempt to examine the peak concentration in this case.
Moreover, no “"relative" dimensions of the plume can be defined
here.

Obviously, the shape of the plume will be elongated along
the x-axis, even under isotropic dispersion (Figure 6.5). The
"absolute” length of the plume L, where C = C, can be found after
taking into consideration that the furthest point longitudinally

will lie on the x-axis, having y = 0. Equation (6.30) then yields:

- kL
= =— exp(- TR
4TEUL
i.e,
o —2— (6.31)
€ v4TEUL

In the special case of no decay, this can be solved for L directly,

giving
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Parameter Sensitivity for 2-D Continuous Source

Table 6.4

: _ &y ,8E | &Y , 80 | 8%, 6k
Quantity Y Y= v/ E v/ U v/ %
1 20-1 20
L Eq. (6.31) ~ 1+20 2041 1420
Ao N 1 _ Ao
4 Eq. (6.37) 1+2)0 142X0 1+2X0
Note: o = kL/U ; A is given by (6.36)
jl
W
— X
w
X7k *
L —
Figure 6.5 Typical Steady State Distribution for a

Continuous Source in a 2-D Domain
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2
L=—2 , (6.31a)

KTEUC?
but, in general, Equation (6.31) requires a trial and error solution.
Even when L is not available explicitly, its sensitivity to the
various parameters can be determined by differentiating (6.31),

rewritten in the more convenlient form:

1n DATEU 4 10+ KR o
m u
After some algebraic manipulations, one obtains:

2kL

== _1
6L__u_— &u
L 2kL +1 U (6.32)
U
SL _ 1 SE
L 2k E (6.33)
1+ 5=
U
2kL
SL__ U __ Sk
L 2kl k (6.34)
L+ |

It is seen that the only parameter controlling the sensitivity of
the plume length is kL/U. For any particular problem, this is
known, after L has been determined from (6.31). A small value of

kKL/U indicates high semsitivity of L to the dispersion coefficient
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and low sensitivity to decay, while the opposite is implied by a
large kL/U. It is worth noticing that, unlike the 1-D case,
an increase in dispersion results, according to (6.33), in a de-
crease in the plume length, due to higher lateral spreading. An
unusual behavior is indicated by (6.32): the coefficient of Q%
becomes zero at 2kL/U = 1 and negative when 2kL/U drops below unity.
Thus, if 0 < 2kL/U < 1, the plume length tends to decrease with
increasing velocity. The behavior of (6.32) to (6.34) over the
range of values of kL/U is shown in Fig. 6.6.

In addition to the max length of the plume, its maximum

width is also of interest. Denoting that by W (Figure 6.5), it

will be

21 kx
= m W w
fﬁﬂEwa W

However, X, is yet unknown. Setting X, = AL and solving the

equation for W:

2  4EML m kAL
W= (In — -
CY4TEUAL

Using Equation (6.31), we obtain further:

W = ‘%I—‘?—[(l—x) ﬁ—" - 1] (6.35)

The value of ) can be determined from the condition that %% = 0.

This implies
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0.0 2kl
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-1.0

Figure 6.6 Sensitivity Curves for 2-D Continuous Source
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1n/% = TH(1-21)- 25 0<acl (6.36)

This can be solved by trial and error and will obviously give 1
as a function of kL/U only, i.e., A = A(kL/U). Rewriting (6.36)

as
1
1ovA + 2

KL
U

1 - 23 =

it is clear that, as kL/U becomes large, A tends to 1/2. On the
other extreme, Equation (10.36) shows that, for kL/U=0, A =1/e =
0.368. The variation of A, as shown in Figure (6.6) is found to

be very small over the range of values of kL/U. Eliminating 1nvd

between (6.35) and (6.36):

W = Q%EA-(zx %L-+ 1) (6.37)

To examine the sensitivity of the width W to the parameters of the
problem, it will be assumed for simplification that A = constant
and only the variability of L will be taken into account.

Tn view of the very small variability of A discussed above,
this is a good approximationm, especially for xL/U > 1, when X is
essentially equal to 1/2.

By partially differentiating (6.37) with respect to E, U, k
and using Equatioms (6.32), (6.33) and (6.34) for the derivatives

of L, we obtain
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w1 & (6.38)

W 2kL U

1L+

2 KL
SW U SE
LN 2kL E (6.39)
U
, KL

SW U Sk .
== T o (6.40)
W 1+ ZﬁL k

These expressions show that, again, the non-dimensional ratio kL/U
controls the sensitivity of W, in addition to that of L. In the
above formulas either the exact value of ) for a particular kL/U,
obtained from (6.36), or simply the value A = 1/2 can be used.

The sensitivity behavior of the width W for various kL/U is also
shown in Figure 6.6. At large values of kL/U the width becomes
insensitive to the velocity magnitude, while it is moderately
sensitive to both the dispersion and the decay coefficient. On
the contrary, at small values of kL/U the width is highly
sensitive to the velocity but not to the other parameters.

The results of this section are summarized in Table 6.4.
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6.3 Two-Layer Flow

Having examined the sensitivity of the solution in the cne-
layer case, this section will focus primarily on determining the
sensitivity of the results in two-layer systems to variations in
the magnitude of interfacial transport as well as identifying
possible differences from the behavior of one-layer systems. Since
analytical solutions are available only under very simple flow
conditions (see Chapter 5), the analysis will be necessarily
restricted to those cases, with the expectation that the basic
conclusions will hold in more general situations. In the
following sections the main parameter of interest will be the
interfacial diffusion coefficient a'. All two-layer results are

summarized in Table 6.53.

6.3.1 1-D Instantaneous Source

When the top layer is loaded with an amount M and the inter-
facial transport is small, the approximate transient solution,

developed in Sectiom 5.1, is:

M (x—Ult)2
Cl = expf- gt (a'+k)t] (6.41)
Y4TEt
C, 27— exp[-(a'+k)t][erf - erf ——] (6.42)
2 2(U +0y) JGEL /GEL
valid for
t < 0.05/a' (6.43)

The top layer concentration, Cl’ behaves as in a single layer, with
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some additional loss through the interface. The peak concentration

in the bottom layver occurs at x=(Ul—U2)t/2 and is equal to

' (U, +u, )t
Cpp = T expl-(o"+o) ] erf—i—t— (6.44)
1 72 2v4Et

Partial differentiation with respect to o' yields:

8C ¥
2. o ﬁg— (6.45)
20

Equation (6.45) indicates that the sensitivity of C,, to a' is

highest at t=0 and decreases with time. Due to the restriction
(6.43), the coefficient of So'/a' in (6.45) stays above 0.95 for
the time range of validity of the approximate solution. On the

contrary, the respective change in the peak top layer concentration

C.qn = exp[-(a'+k)t]
10 Y4TEL

with respect to a' is given by

8C .
_ELQ = 't ﬁg' (6.46)
10
This is quite small, since a't < 0.05. Indeed, the small-time
approximation of Section 5.1 is based on the assumption that inter-

facial mixing affects C. very little.

1
For the small times for which (6.44) is valid, a further

approximation may be made by setting erf y = 2y/vYT. Then

Cop = a'My ﬁﬁ-exp[-(a'+k)t]
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and consequently,

8¢ :
1 SE
=25 .47
20
It follows that the bottom layer peak is moderately sensitive to the
dispersion coefficient but independent of the velocity magnitudes.

To find the length of the plume in the bottom layer, having

02 > E, the equation

M oxpl- (@)t [er£ (

L-HJt) _ erf(L-Ut)] = C

v4Et vY4Et
has to be solved by trial and error. However, at least for
small times, C2<< Cl and therefore there is no point in pursuing

further the examination of the extent of contamination in the

bottom lLayer in this case,

6.3.2 1-D Continuous Source

The steady state solution for a conmtinuous source of
strength m at x=0 in the top layer has been given in Section 5.2.
The resulting expressions for C, and ¢, are rather complicated and
an analytical sensitivity analysis will not be attempted here.
Nevertheless, the fimal distribution of mass between the layers can

be easily examined. According to Section 5.2, the mass in the top

layer is

_ {(a'Hk)m
M K (2o ) (6.48)

while in the bottom layer
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__o'm
My = Ko+ (6.49)

To determine the sensitivity of this mass breakdown to the value of

a', one has to employ partial differentiation to the above

expressions. The results are:

uf
GMI _ k éa!
M. ot 142 a’ ol (6.50)
1 (1+ -l-(—)( + K )
&M
1 8ot
2 1+2 —

k

It is seen that the ratio of interfacial diffusion to decay is the
controlling non-dimensional parameter. As that ratio increases,
Mz tends to become insensitive to changes in o'. However, Ml

is insemsitive to the interfacial transport rate at either very

small or very large values of a'/k. The highest sensitivity of Ml

is attained at a'/k = 1/v2, corresponding to

M '
—L - p.172 ‘5:,

1

which is still rather low.

Looking now at the ratio MZIMl’ given by

= = (6.52)

one obtains
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SO, /M) '
2771 1 Sa
- Sa_ (6.53)

2 M1 1+

R

This further confirms that the distribution of the constituent
between the two layers is not sensitive to the interfacial transport
rate, provided this is at least moderately higher than the decaey rate.
In the case of a very low value of a'/k, however, the overall mass
distribution becomes highly sensitive to the value of the inter-
facial diffusion rate; this 1s due to the semsitivity of MZ’ i.e.,

the mass of the bottom layer, which is all gained through the inter-
face. The behavior of Equations (6.50), (6.51) and (6.33) is

shown in Figure 6.7.

6.3.3 2-D Continuous Source

The approximate steady-state solution for a continuous source
in the top layer of a counterflow is given in Section 5.3, For the
top layer the solution is essentially the same as for a single
tayer and the conclusions of Section 6.2.2 apply. The bottom layer

concentration along the x—axis is given by:

C., = a'm erfe(/ aU+k|x|) 3 y=0 {(6.54)

2 4UVE (T +k)

The peak concentration, at (x=0, y=0) is

c, B =-—20—
20 LuEGER (6.55)
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From (6.55)

—_ 02 (6.56)

This indicates a considerable sensitivity of the lower layer peak
to interfacial diffusion for both small or large values of a'/k,
the coefficient of 8a'/a' tending to 1 and 1/2, respectively. The
detailed behavior of (6.56) is presented in Figure 6.8.

The “relative" half-length of the (symmetrical about x=0)

plume can be found from

a +k

erfe( T

BCZO = C20 Lr)

i.e.,

erfc(/au+k L) =8 (6.57)

with the help of tables of the error function, once the parameters

of the problem and B are known. For a fixed B, the argument of the

error function is also fixed, say B*. Therefore,

U a2
L =g B (6-58)

Differentiating with respect to a',

23
GL T ]
_zz = - ___E_T.QLT (6.59)
T 1+ %—- o

As shown in Figure 6.8, the length of the plume is quite sensitive
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to o' for large values of a'/k, but not for a'/k << 1.

The above results as well as the sensitivity of C20 and Lr
to the velocity and dispersion coefficient are summarized im Table
6.5. Elaboration in determining the plume width from the general

expression of C, given in Section 5.3 is not justified in view of

2
the very approximate nature of that expression and the restriction

of its validity to a narrow range of y only,.

In concluding this chapter, some important points should be
emphasized. Firstly, as the previous analysis has indicated, the
significance of the various parameters in determining the peak
concentration and the dimensions of the area affected by a pollutant
source depends on the problem (i.e., continuous or instantaneous,
1-D or 2-D, etc.}. Within each class of problems there is a
non-dimensional combination of the paramsters which governs the
behavior of the above mentioned plume measures. In particular,
in two-layer steady state problems the ratio of interfacial
diffusion to decay rate is of basic importance, with respect

to concentrations in the layer with no source.

In most cases, the dispersion coefficient seems to be less
critical to the results than the velocity magnitude. 1In a complex
circulation field the velocity direction must also bhe of importance,
controlling the direction of motion of the plume, on the average.

In this context, the advantage of the two-layer formulation 1s the
more detailed description of the velocity field. A relevant

question is, of course, that of the uncertainty of the velocity
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Table 6.5

Parameter Sensitivity in Two-Layer Systems
8y 6o’ &y ,8E | 8y ,8U
Case Quan%ity Y = Y, % Y/ - Y, 5
1-p ot ~ _.l
Instantaneous €20 Eq. (6.44) 1-o't -2 0
1-D M (o'Hd)m _ 8]
Continuous 1 k{(2a"+k) (1+0) (1+20) 0 0
a'm 1
— 0 0
Mz k(2a'+k) 1+20
ol 1
Moy Tk 1+0 0 0
2-D c a'm 1 240 1 1
2
Continuous 20 GACAES) 2 140
a
U -1 2 -
1l
L 0L,_l_k(ifn:f«: B) 1+o 0
Note: o =a'/k
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field used. This has to be tracked to the circulation mecdel or
measurements used to provide the velocity inputs and is beyond the
scope of the present work.

It should be clear that the conclusions reached on sensitivity
strictly apply for marginal changes in the parameters only. A
large change in any parameter may significantly change the value
of the.non—dimensional ratio controlling the sensitivity; neverthe-
less in regions where the sensitivity curves are leveled off, even

the effect of large parameter changes can be readily predicted.
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CHAPTER 7

THE FINITE ELEMENT FORMULATION

7.1 The Weak Form

The governing equations (2.11, 2.14) for each layer have the following

form:
B, B my Doy =B - .
gt T ag (WO + 35 (0 = -5 Q- 5y Q +F (7.1)
where
__m g 9¢ _ 3
QK = ExxH 3 Exyﬁ P {7.1a)
oc 3¢ \
=-E_Ho--E H= 7.1b
QY Xy~ 9x vy oy ( )

and P includes sources, decay and exchange between the layers. The

boundary conditions are (Figure 7.1):
i) Essential, i.e. the concentration is specified on the boundary

segment Sc:

C=C* on SC {7.2a)

ii)} Natural, 1.e. the normal concentration gradient or, equivalently, the

normal dispersive flux is specified on the boundary segment Sq

Qn = Qn* on Sq (7.2b)

~

In seeking an approximate solution C, the partial differential equation

(7.1) along with the boundary condition (7.2b) are transformed to an
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Figure 7.1 Solution Field and Boundary Conditions
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integro-differential equation by multiplying with a weighting or test

function W, integrating over the total domain, and requiring the resulting

expression to vanish:

_ 2G0) . 3(¥C) . D 3
R—H {.&t + +$Qx+§~;qy-P}WdA+

Ix 3y

A

+ J (Qn* - Qn) Wds =
)
q

(7.3)

The trial function E, is required to satisfy the essential boundary

condition (7.2a), and the weighting function to satisfy the homogeneous

form, i.e., W =0 on Sc'

Employing partial integratiom, i.e., writing

_ 2 g

( Bx Q W = 9x (wa) Qx %
9 _ .9 - o
3y &Y T By ) - % gy

and applying Gauss' theorem,
{i(qw)+£’~(W)}dA= Q_ Wds
3x " *'x y Qy n
A s

Eq. (7.3) is transformed to

”[{ +—(c)+§y—(vc)-1>}w x'c)x
A
+j Q* Wds = 0

]
q
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Since Eq. (7.4) involves only first derivatives of C, the trial
functions can be simple piecewise continuous functlons, which require only
continuity of the function itself within the domain. Also, since the
equation involves only first derivatives of W, the test functioms have the
same requirement as the trial functions. Eq. (7.4) 1s called the "symmetri-
cal weak form". Transforming (7.3) to {(7.4) makes it easier to find a
solution because simpler trial functions can be used. However, uniqueness
of the solution is harder to prove. According to Wang and Connor (86},
the symmetrical weak form is the optimum form, constituting a balance
between existence and uniqueness of the solution, and allowing € and W to
be chosen from the same solution space. The application of the finite

element method is thus facilitated.

In the finite element method, the domain is subdivided into smaller
areas, called elements, and the total residual R, evaluated as the sum of

the element residuals, 1s required to wvanish:

R=% R =0 (7.5)
a

The solution variable, here the concentration C, is approximated in each
element by a trial function, which interpolates between the comncentrations
at certain points in the element. Thus, the continuous problem is trans-~
formed into a discrete problem with the concentrations at these points as
the unknowns. Depending on the form of the integral equation, the trial
functions have to satisfy certain continuity conditions (13). The

simplest element for a two-~dimensional domain 1s the triangle. The admiss=-

ibility of simple piecewise continuous trial (and test) functions allows
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the use of linear interpolating functilons within the triangles, resulting
eventually in transformation of (7.3) to a set of ordinary differential
equations with the values of concentration at the cormers of the triangles
as unknowns.

The finite element formulation for this simple case is outlined in
the next section (see also Leimkuhler (43) ). Various other element shapes
as well as interpolation functions can be used. A great advantage of the
finite element method is that the basic formulation remains the same,
irrespective of the specific type of approximation employed. Another basic
advantage of the finite element method, a consequence of the division of
the domain into individual elements, is the capability for easily handling
spatial variability of properties or parameters. Finally, the finite
element discretization 1s well suited for the description of irregular
boundaries, common in coastal water bodies, and has great flexibility 1in

providing variable spatial resolution, as may be desired.

7.2 The Finite Element Approximation

Using a local coordinate system for a triangle (Figure 7.2), the

concentration expansion corresponding to a linear interpolation is written
as

C = §1Cp + £Cy + £45C4
where

g3=1"E1-£2
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Figure 7.3 Local Boundary Segment Coordinate System
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The matrix form is

where

N=1[& & & I

and

(7.6)

the superscript (e) denoting element property throughout this chapter.

The following relations hold between the local and global coordinates,

provided the nodes are numbered counterclockwise (13,93 ):

El = 5K (kl + blx + aly)
E. =X (k, +b,x+ ay)
2 % 24 ‘%2 2 2y

where
o B S by =¥, 73
3y =% T % by=¥3~ %
ay = Xy = X by =y, — ¥,
and

-1 - =
A=3 (bla2 b2a1) the area of the trilangle

while kl, k2 are constants of no particular significance.
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The boundary segments are handled similarly (Figure 7.3):

Cp = 510 * £,6

or
_ bbb

Cb =N g
where

b

N = (g &)

b ¢y

c = c
and

2-1%

For a fixed grid, N is invariant with time, while C° is independent of
space for a given element. Therefore, the derivatives of C can be

expressed as

e
c_ %X
ot - dt
e

¢ _ "~ e

5% -~ 9x (7.11)
c_ A e

oy 9y <

The derivatives of N are found from (7.6),
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N
g 1 1
=== —=—[b, b, b,] =——b
ox ZAe 1723 2Ae -
(7.12)
R A
24° 24% ~

These are special applications of the general chain-differentiation rule,
rhrough which the derivatives of an arbitrary function f can be expressed

as:

af 2 oae %1 3,
ox go1 985 9x 4. 5 1 8%
(7.13)
g_gafagi_l 3o o
By gop 085 OV pp® 4o 13y
The following integration formula (93) 13 useful
P S TR o Auvl e
Ie £ & &£y dA=GoawnyT A (7.14)

A

For A=u=1, v =0, this simplifies to:

= f =
where Sij the Kronecker delta Gij 1 or 1 = j

6ij =0 for 1 # 3

The test function is taken to have the same form as the trial function.
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In particular,
W =AC = N AC® (7.15)

Differentiation formulas similar to (7.11) apply for AC as well.
Now substituting back in Eq. (7.4), the weighted residuzl for one

element becomes

ac*

e - ~ 4+ 9 (5 3 ey e _
R™ = H [{g it 5 (uC) + % (vC) - PIN AC
Ae
oN oN e o
- - i *
(Qx ax+0y E’y) AC ]dA+J eQn N ACT 48
S
q
or, by rearranging:
ac®
RS = (A" = - P9 + (ac®HT P (7.16)
where
M = ” NN da (7.17a)
e T a - 3 =~ 3§T agT
P =”e [N (P - 57 (WO) = 52 (VO) + 5-Q + 5+ Q Jda (7.17b)
A
e - J Tq * as (7.17¢)
~ A e ~ 1n
q

Of course, the boundary term enters only for elements that have a side

on S .
q
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The matrix M is time invariant and depends only on the geometry of

the element. Using (7.14):

El
f=ﬂ g%dm” £, | 1€ £ &1 dA =
A° A% | g,
2 1 1
Ae
=17 1 2 i (7.18)
1 1 2

The P° vector includes the contributions of the advective, dispersion and

source/sink terms., Using the approximations

_ _e
u=Nu
c=NC"
we obtain
2 (30) I R
ax v o o e LY Bk~
aN oN
=Nce__".'.ﬁe+u ae_..‘:ce (7.19)
A 3x~ ~ o 3x~
e _e aN
Because C , G , si are independent of space,
aN oN
T 3 - _ T e ~ —@ T e ~ .e
[[ & Goa-cff waoegisff sy
A A% A
Similarly
oN oN
H NT—Q—-(GC)dA=(” NTNdA)ce—ZGe+(” N'NaA )7° = ¢©
A A A



Hence, the contribution of the advective terms can be expressed as:

- ” NT( 2 (50 + 2 (3) Yda =

dy
Ae
2 1 1 2 1
_ 1, -e -e e 1 e L oTe |t
=-gplbetayd 2 1y mgp |l 2 1 (wptvae
1 1 2 1 1
= -ASc® (7.20)

Noting that bu"+ aviis a scalar, it i1s seem that the first part of the
"advection" matrix A° is symmetric, but vanishes under uniform flow
conditions, since Ebi = Eai = (.

The centribution of the dispersion terms is given by:

o’ a 1,.T T
HE o &ty YR EG T (7.21)
A

where Qx’ Qy are obtained by expanding (7.la,b):

Exx e Cc a Egz e C e
Q= =5 (BC - g b)) - —5 (aC” -3 af)

2A 2A

Egz e C e Ezz e C e
Q = - ¢ (bC - g bHY) - == (aC” - g al)

24 24

The dispersion coefficients are treated as an element property and assumed
constant within each element. For simplicity, instead of expanding the

ratio C/H, its average value over the element may be used, i.e.
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|

C =
H

| =
N e
=

i=1l i

Thus, the dispersion term takes the form:

T

-% blq + aTQy) -l g b +E bTa+E ab+E _aa)ce
~ X - 4a8 XX~ o~ XY~ ~ Xyn ~ ~ - =
+ (%) L & 2% +E bla+E_ab +E _ala) B
_ e.e C. e
= -k + @ K°H (7.22)

In the particular case that the layer thickness is constant over the domain,

o
o
ja =
l

= bY(bu®) = bT(blH +bH +bH) =0

bTag® = aTbi® = a'al® = 0

and the last term in (7.22) wvanishes.
The remaining part of P® contains the distributed source and sink
terms, as well as interfacial transport between the layers. The contribu-

tion of a linear decay term -kC over the element is

- JI NTkCdA = - J{ NTKNC®dA = - k ( JI N'NdA ) C® =
e e~ 77 e 7 -
= - kc® = - 1% (7.23)
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Assuming a linear distributed source,

2 1 1
e
J[ gTRdA = ( II ETMdA )RS = %5 1 2 1|8 =s° (7.24)
a e
A A 1 1 2

e
where R° denotes the sources at the element nodes, if any.

Finally, the interfacial transport from layer 2 to layer 1 is given by
Q = (%, - W) =5 +ale, - ¢y

Because “L and o depend on the layer velocities, they are variable over
space and time and it is convenient to work here with the overall quantity

Q21' Setting

_ e
Qp =N Q
we obtain

s Jf N'Q, dA = i(II NNaa)QS, = + MOQ5. = & Ex® (7.25)
a e

where 921 is the vector of interfacial fluxes at the nodal points and the
plus and minus signs apply to the top (sub. 1) and bottom (sub. 2) layer,
respectively. This treatment of the interfacial exchange term is similar
to that of a distributed external source. However, unlike Be, g;l depends
on the layers concentrations and has to be updated as they change during

the solution process,
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TIf there is no net entrainment and if o is considered constant

over the element, the expression for Q21 gimplifies to
C C
- - 2 1
Qpp = aley ~¢p) =alg - g )
2 1
Assuming Hl £ H2 % H yields an additional simplification,
Qy; = &'(Cy = €) = o' (ME,% - NC,©)
where a' = af/H. TFinally,
+ If NquldA =1+ q' ( JJ NTNdA )(C,° - cle)
A A ) i
=+ a'™™(C," - 6,
=iEe(Ce-Ce)
~ =~ ~1
Summarizing, the wvectors are:
e __,e.e__e,e C. e _e.e %€
El B 51 91 51 91 + (H)av Ifleg ]31 El + B
e _ _ e, e _ e, e G e _ e, e _.€
Py == 8, C KGRy, K,H," - D,°C, - E

where the various matrices are defined in Eqs. (7.20) thro

When the thicknesses and o' are constant, Egs. (7.27a

e_ _,e.e_,e.e e e €;n & _ . ©
P," =~ ACT -K/CT - D¢ +E(C ¢, )+ 8
e e e e e e =] e e e
= - -— - — - +
Py A, C, - K, C,7-D,C,m - ENC C,) +5,

(7.26)
+8,°  (7.27a)
+ §2e (7.27b)
ugh (7.25).

,b)} reduce to

€ (7.28a)

e

(7.28b)



With respect now to the boundary terms, we set

b be
i = *
WY
and obtain
2 1
be bT. b be A be
= * = = *
E ( J ~ ds ) gn 6 9n
8 1 2
q

where % is the length of the boundary segment.

(7.29)

Eq. (7.5) states that, for each layer, the sum of weighted residuals

of the elements 1s required to vanish:

é (ACe)T(ME e _p® b) -0

~

Formally carrying out the summation, we obtain the system equation:

A ME-P+F) =0

Since AC is arbitrary, the parenthesis must vanish, i.e., for each layer:

MG =% -F =P

» b ~
MGy =By -F, =0
If Pl’ P2 are expressible by {7.28a,b), the system equations can be

written as:

|
n

1
T

M)Cy + 80 *+ KRG +D,C) +E(C) - Cy) =5 =~ F

(]
w

|
o

MoCy + A58, + KyCy + DyCy + E(C, ~ Cy)
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This form of the equations 1s convenient for subsequent analysis of the
numerical approximation, since all concentration-dependent terms are
directly expressed in terms of the concentration vectors and constant

(that is, not depending on cencentration) coefficients (see Chapter 8). Of
the matrices involved in (7.3la,b), the geometrical matrices yl’ EZ are
usually equal, since the discretization is the same for both layers.
Although practically important, the case in which layers do not extend

over the whole domain is pnot considered in this work.

7.3 Time Integration Strategy

The general form of the equations (7.30a,b) is more suitable for
discussing the time integration scheme. These equations constitute a set
of ordinary linear differential equations with the nodal concentrations of

the two layers as unknowns. The trapezoidal rule is used to integrate in

time.
M(C —¢, ) =8t + P, ) (7.32a)
< 2l,teAt 0 21, 2 Cll,t+Ae 0 L1, ‘

MCy e ~ S2,8? =72 By cear + gz,t) (7.32b)
Since El,t+ﬁt’ E2,t+ﬂt depend on El,t+ﬂt’ Ez,t+ﬂt’ these equations

constitute an implicit scheme and are solved here by iteration. The values

of Cl e o along with the loadings and velocity inputs at time t deter-
~Lsy ol |

~

mine Pl,t’ EZ,t'TO obtain initial values of gl,t+ﬂt and P2,t+At , the

— ~

concentrations 91,t+ﬂt’ 92,t+ﬂt must be given initial guesses. The

simplest approach is to set
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(1)

Ci,e4ae = C%1,¢
¢ - ¢

~2,t¥At  22,¢t

where the superscript in parenthesis denotes the iteration index. Then,

new values of gl,t+ﬁt’ 92,t+At are determined from:

(i+1) At =1 a(4) ~
Crotvar =S,e ¥ 78 e YY) (7.33a)
(i"‘l) " M - "(‘j_) ~
22, t+At gz,t + 2 {l (EZ,t'I'ﬁt + EZ,t) (7.33b)

The geometrical matrix M is time invariant and therefore has to be computed
and inverted omly once. This is of major importance in practical problems
with significant time variability. A direct, non-iterative solution for

would involve the inversion of matrices of the form M + %f—(K+A+D+E)

e g

9t+ﬂt

in each time step, which increases the cost of the solution considerably.

In the transient case, the flow field as well as the concentration varies
with time. The latter determines the advective terms, the interfacial
transport coefficients and, in general, the dispersion coefficients.

In addition, sources and boundary conditions may vary with time. By lumping
all terms in the % vector and employing the iteration procedure, maximum
flexibility in handling time variability of any or all of the relevant
parameters and loadings is achieved. Moreover, the most general case of
non-linear decay, dispersion of other terms cam be readily handled in this

way. This is particularly significant when there is interfacial exchange
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which "links" the layers and makes very difficult the exact solution of
even the simplified Eqs. (7.31a,b). However, the iteration strategy
requires a restriction on the time step.

In practice, the iteration continues until there is little change in
concentration between the current and previous values. A tolerance limit
has to be specified and compared to some measure of deviation of current
nodal values from the previous omes. Thus, the iteratlon at t+it is

considered to have converged adequately when, for each layer separately:

(C(i+1) _ C(i) y2 1/2
j. AL J.tHAt
all
nodes ( ; 77 < Tolerance (7.34)
i+1 2
E (c ,t+m:
all
| nodes

where j = 1,2 refers to the layer index. An upper limit on the number of
iterations at each time step may be also imposed, so that the solution
proceeds to the next time step without satisfying (7.34).

In the absence of interfacial tramsport, Egs. (7.33a) and (7.33b) can

be solved separately. With interfacial transport, each of the vectors

e

Pl’ P depends on both C and 02 as well as the velocities U 1, U2' To
enhance the rate of convergence, the updated value Cii:iit is used to
(1) )

calculate P2 AL The scheme is illustrated below:

(1) ~(1) (i+1)

CLetae — 21 t+ac > € eiar

(1) \: (1) (i+1)

92,t+m; o ~2 , tHAL Q2 tHAL
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This procedure can be readily generalized for an arbitrary number of layers,
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CHAPTER 8

STABILITY AND ACCURACY OF THE NUMERICAL SCHEME

In the previous chapter the finite element approximation to the problem
was presented and the method of solving the resulting set of linear
differential equations was discussed. As in all numerical models, two
important issues relevant to the usefulness of the numerical approximation
are the stability and the accuracy of the numerical solution. The former
is normally associated with the selection of the time step in problems
where time integration is required. Explicit schemes, i.e., determining
the value at the next time directly from values at previous times, always
need a restriction on the time step for stability. This is not so for
implicit schemes, e.g. iterative formulations, some of which may be stable
for any time step (depending also on the problem). Since the cost of the
solution is directly related to the timestep, efforts are always made for
devising more stable schemes. There are also other factors limiting the
time-step which depend on the particular problem and the objectives of the
model. For example, if it is desired to study the effect of tidal varia-
bility on the dispersion of a pollutant, the time step should at most be an
order of magnitude smaller than the tidal period, so that enough resolution
is provided.

The accuracy of the numerical solution, although in general may depend
on the time step, is mainly associated with the space discretization. The
relation of the grid size to the parameters of the problem and the particular
form of the function to be approximated control how close the numerical

solution can be to the true solution. Of course, the true solution cannot
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be known except in simple cases, where analytical expressions are available,
Starting from such simple cases, approximate general criteria can be derived
which give an idea of the accuracy of the approximation im a particular
problem and suggest ways for improvement. Rapidly varying boundary condi-
tions, sources, or other forcing terms are often sources of inaccuracies

and sometimes instabilities for otherwise well-behaved schemes. In parti-
cular, with respect to the convection-diffusion equation, ipaccuracies
originate from the fact that a fixed grid is inherently not suitable for
describing a moving plume which has high concentration gradients, especially
near the edges and near localized sources. Evidently, the accuracy of the
approximation increases as the grid becomes finer but this 1s achieved at
the expense of higher costs due to increased computer time. Clearly, there
1s a trade-off between economy and accuracy considerations; While it is

not feasible to eliminate inaccuracies totally in the solutiom, it is
possible to restrict them within acceptable limits.

In this chapter the stability and accuracy characteristics of the
finite element solution strategy are discussed. Because interfacial mixing
15 usually small, the behavior of a single layer is of basic importance
and is presented in detail. Before examining the finite element methed,

some background from familiar finite difference schemes is considered

first.

-175-



8.1 Background from Finite Differénce Methods

Most common finite difference schemes used for solving the convection-
diffusion equation have been investigated extensively with respect to
their stability and accuracy characteristics,in the search for devising
better numerical approximations. Formal mathematical analyses are usually
restricted to the case of coustant parameters and deal mostly with the
simplest one-dimensional case. An excellent review on the subjiect is

presented by Roache ( 70 Y.

Considering the one-dimensional convection-diffusion equation

2
dc e _ E a’¢e (8.1)

ot U 5% 9x2

it can be seen that a typical Fourier component of the solution iz of the

form ( 82):

CT‘= C0 expl - k?Et + ik(x-ut)] {8.2)

where k is the (real) wave number and Co is the initial wave amplitude.
Approximating (8.1) by using central differences in space and forward in

time (Euler method), one obtaims:

n+l n _ EAt n n _,. 0, _ Uit n _ . n
; j T2 (cj+1+ cj_1 2cj) An cj+1 cj_l) (8.3)

where the subscript is used as the space index and the superscript as the

index. The solution of Eq. (8.3) has the form

cj“ = Co?\nexp(ikjﬁx) (8.4)
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Substituting in (8.3) yields

A=14+2 EéE (cos kAx -1 -4 %ﬁ; sin kAx (8.5)
n+1l n . N n PR .
Because cj = hcj , the coefficient A is called the "amplification

factor"” and is, in general, complex. To ensure stability as the sclution

proceeds in time, A must satisfy the Von-Neumann condition

¢
] = —d— <1 (8.6)

which implies that a perturbation introduced into the system is bounded.

From Eq. (B.5)

= [ 1+ 27> E&t (cos kAx - 1)]? + [ sin kAx]? (8.7)

This indicates that for any wave number k, stabllity is controlled by the
two non-dimensional groups EAt/Ax? and uAt/Ax, involving the parameters of

the problem and the time and space discretization used., When ( 70}

_u.é.}i < 2 (8~8)

E

the max value of A% occurs for kAx = T which yields the stability criterion

Ax?
At < SE (8.9

Eqs. (8.8) and (8.9) imply

At < Z—E (8.10)
u

and further

At < ATX (8.11)
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which is analogous to the Courant condition in circulation problems.
However, when (8.8) 1s not satisfied the maximum value of A2 is always
larger than unity and therefore (8.8) is necessary for stability of this
particular scheme.

Approximation (8.2) is an explicit scheme; which is conditionally
stable, provided the time step satisfies (8.9) and (8.11). A simple
implicit scheme is obtained by using the trapezoidal rule for time integra-

tion of (8.1).

n+l n _ 1  EAt o+l n+l _ ntl, uvAt n+l _  ntl
A AR T A A R A L TR G i)
1 ; EAt n o n udt n n
7 U a7 ©C5p1 ¥ €42 7265 -~ py ( Cypp = G4y} (8.12)

Substituting Eq. (8.4} in Eq. (8.12), the expression for the amplification

factor is

A1 - %%% {(cos kiix -~ 1} + 1 %%% sin kAx} =

=1+ %%%—(cos ktx - 1) -1 %%% sin kAx
Then
- {1- %%% { 1 - cos kiAx 1% + ( %%i sin kAx )? .
i [ 1+ %%% ( 1 - cos kAx )]2 +( %%% sin kix )2 (8.1

Since cos kAx < 1, Eq. (8.13) indicates that A? < 1 for arbitrary At and

the scheme is said to be unconditionally stable.
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Even though a particular approximation may be stable, the solution
may still be far from the true solution. Viewing the latter as a set of
waves propagating downstream and diffusing according to Eq. (8.2), there
are two types of errors introduced by the approximation:

a) Amplitude errors, i.e. either excessive or inadequate damping of the
wave magnitudes (numerical diffusion)
b)  Phase errors, i.e. incorrect speed of propagation of the waves

(numerical dispersion).

Setting t = nAt and X = jAX, the exact solution (8.2) becomes

Cp = CO[exp( -k2EAt) 1Mexp[ik(jAx — unAt))
= Cc'[emb(-(kﬂ\:«z)2 E—i? ) I"exp [ikAx(j - n %)} (8.14)

The approximate solution obtained by the Euler method is given by (8.4),

where A is defined in (8.5).

Setting
A=p e-le (B.15)
Eq. (8.4) takes the form
Cjn = Copn expli(kjAx - nb)]
= ¢ p" [ikAx(j - ¢ 8.16
= C o exp[ikAx(j - n EK;)] (8.16)

From Eq. (8.5), the modulus p of A is
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_ EAt 2 uAt 2 1/2
p=[(1+2 Aix (cos kiix - 1) )“ + ( 75:'51n kAx) < 1] (8.17)
and the phase 0 is
%%E sin kAx
§ = arctan 1;ﬂt - (8.18)
1 4+ 2 == (cos kAAx - 1)
Axz2

By comparing Eqs. (8.14) and (8.15) it is seen that the ratio of the

approximate to the true magnitude in one time step 1is:

EAt  ult

B - EAt  ult
exp(~k2EAt) f1(kéx’ Ax? ° &x) {8.19)
and after a time t = nAt
n
- £ (8.19a)
exp(-k2Et} 1 .

On the other hand, the ratio of the distance travelled by the approximate

solution to the real one in one time step is expressed as:

0/kdx _ 8 _ EAt  uAt

wht/te - Taht - T206A% Faz o ax) (8.20)
and apparently remains the same after time t = nAt.

Although the forms of fl and fz depend on the particular approximation
employed, it is important to realize that the two non-dimensiomal groups
EAt uAt . s .
2L> and === which are of significance in stability considerations, also
Ax? Ax
control the accuracy of the numerical approximation. Of course, the ideal

case of fl = 1 and f2 = 1 for all k is never possible, since it character-

izes the true solution itself. The amplitude error may, in general, be
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considered more important because of 1ts exponential growth with time,
Methods with no amplitude error do exist for simple convection (E = Q).

Indeed, the simple trapezoidal scheme for E = 0 yields (from Eq. (8.12))

14+ ¢ %é} sin kﬁx)2

3?2 = =1
1+ ( %ﬁf sin x)2

for all k, indicating that a unit wave propagates without any spurious
damping. This is characteristic of time-centered approiimations of the
advection equation ( 53 ), which are consequently called "neutrally stable”.

An alternative way of expressing the artificial damping caused by the
numerical approximation was introduced by Hirt ( 29 ). Expanding all terms
of (8.3) in Taylor series about the point Cjn, the fellowing differential

equation is obtained:

ac dc _ u?At
ot TV ax T (E - 2

2
) %;%— + higher order terms (8.21)
This indicates that, instead of (8.1), a different equation is solved and,
in particular, a spurious diffusivity has been created

_ u®Ac
a 2 (8.22)

Stability requires E » E which is equivalent to (8.10), since otherwise
the solution would grow expomentially. But, even if that is satisfied,

the reduction in the effective diffusion coefficient is a source of
inaccuracy. The artifieial diffusivity of other finite difference

schemes has been examined by Roache ( 69 ). A compact expression for first
order space differences and a forward time difference is ( 3 )
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E, =§ [(1 - 2Y)Ax - uAt] (8.23)

where
Yy =0 for backward space differences
y = 0.5 for central space differences
y=1 for forward space differences

It is clear that Ea is always negative in this case, thereby reducing the
magnitude of the actual diffusion coefficient. It is also seen that Ea is
smallest for backward differences, which may explain thelr popularity in

steady flow problems.

The term in (8.23) associated with At 1s eliminated when steady state
is considered ( 69 ). It also vanishes when time centered schemes are
used. Then, the choice of central space differencing completely eliminates
the artificial diffusion coefficient. Any amplitude error remaining should
be small and is related to the higher order terms of Eq. (8.21);

As discussed earlier, it is possible to have no amplitude error in
solving the equation of pure convection. However, phase errors can never
be totally eliminated ( 31 ). Fromm { 23 ), reviewing first and
higher order approximatiocns in the search for devising a method of reduced
dispersion, concludes that most finite difference schemes have lagging
phase errors. In view of the previous discussion, this gimply means that
f2 <1 in Eq. { 8.20), indicating that the approximate waves lag the true
waves. But, in addition, most schemes exhibit a larger phase error in the

larger wavenumbers (i.e. higher frequencies). This differential error

between the components of the solution causes ( 23 ) an upstream
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steepening of some initial distribution shape belng convected downstream,

which may even lead to the appearance of spatial oscillations. The

addition of a diffusion term is the convection equation, apart from changing

somewhat the phase errors, acts as a damping mechanism with a higher effect

at the large wavenumbers. Thus, the diffusion term helps in smoothing

out the distribution and moderating the effects of numerical phase disper-

sion by suppressing the contributions of the most erroneous wave components.
Phase errors are, of course, irrelevant when only the steady-state

solution of (8.1) is desired. Accuracy in this case is associated basically

with the smoothmess of the solution, which is associated with the ability

of the grid to handle steep concentrations gradients, such as those

occuring in the vicinity of a continuous source. The parameter EQE’ the

so-called "grid Reynolds number" is found to be of fundamental importance,

when a central difference approximation is used ( 70 ). In particular,

condition (8.8) has to be satisfied for the smoothness of the exact

solution of the difference analog (8.2)

8.2 Analysgig of a Regular Finite Element Grid

8.2.1 Stability

For a single layer, the finite element approximation leads to the

following matrix equation:

MC +AC+KC+DC =S (8.24)

LYW

Neglecting decay and source terms and employing the trapezoidal rule for

time integration, Eq. (8.24) takes the form:

At ~
MGy =Co) + T (G, *KC, + 4G, FKC) =0 (8.25)
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where A and K are considered constant for the purposes of the following
analysis and the subscripts n, ntl, refer to times t and t+At, respectively.
The techniques for studying stability and accuracy of finite difference
equations, discussed in the previous sections, can be employed to Eq. (8.25)
only when the finite element grid is regular, such as that shown in Fig.
8.1. To examine node A,the contributions from the six adjacent elements have
to be considered. Assembling the individual matrices, defined in Section
7.2, and taking into account that the area of each element is A% = as?/12,

Eq. (8.25) becomes:

(6 cfl + c;“'l + cgﬂ + cg’d + cg"'l + c;,”'l + cgﬂ) +

B A E AL
X w+l n+l o+l nt+l mtl ol
_E - - 6 L ) - _
+ 6 As? (2(1A CC CF ) + Ae? (2(‘A CB CE )
ult n+l n+l ntl ntl n+l nt+l
+ i (CB + 2CC +CD --CE - ZCF - CG )
VAL n+l n+l n+l utl nt+l nt+l
+ s (—ZCB . --cC + CD + ZCE + CF - CG )
n EXAt n n n
_ n n n n n n _ . ~
= (6(:A + CB + cC + CD + CE + CF + CG) 6 L (ZCA CC CF)
6E At uAe
n n n n n n n n n
- —pgz (2€, - Cp - Cg) = 75 (Cg + 2 + Cp - Cp - 265 - Cg)
VAL n n n n n n
" e (—ZCB - CC + CD + ZCE + CF - CG) (8.26)

where U, V and the x,y components of mean velocity (the overbars are
implied throughout this chapter) and E_, Ey are the x,y components of the

dispersion tensor (Exy is neglected here for convenience) .
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Figure 8.1 Example of a Regular Grid

Figure 8.2 Definition of Angles for an Arbitrary Triangle
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By analogy with (8.4), set

_ n
c, , = COR exp(ikxjxﬁx + ikyjyﬂy) (8.27)
Introducing this expression into (8.26) yields:

36 + 2 cos k. As + 2 cos k_As + 2 cos(k_As + k_As)]
v X x Y

EXAt E At
+6—E;—2——(2-2coskxbs)+6—AL32—(2—2coskyﬁs)
udt

As [- 2 sin kxﬁs + 4 sin kxAs + 2 sin(kxAs + kyAs)]

vAt
+ 1 a [- 2 sin kx&s + 4 ain kyAs + 2 sin(kxAs + kyﬁs)]}

[6+ 2 cos k As + 2 cos k_ As + 2 cos(k_As + k_As)]
y X X ¥

E At E At

X
6--—(2-2coskxAs)—6F-

As?

{2 - 2 cos k_As)
Yy

El—"i—t[—2s:l.nk;‘1«.s+l4s.i'.nl< As + 2 sin(k_As + k_As)]
As ¥y X b4 y

-4 %éE {- 2sink As + 4 sin k_As + 2 sin(k_As + k_As)]
s X y X y

Concentrating now for simplicity on the one-dimensional problem (v=0,

k =0,k =k}, we obtain:
y =

(4 + 2 cos kis) ~ 6 Eé% (1 - cos kAs) - i3 vt sin kAs
(4 + 2 cos kAs) + 6 a? (1 - cos kAs) + 13 As sin kis
This is written as
Y =2-Y- 18 (8.28a)
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where

B =44 2 cos kiAs

Y =6 %%% (1 - cos khs) (8.29)
§ = 3-%é§‘sin kAs

It follows that
IA]? = (B-y)?® + 8%
(B+y) + 8
since cos kAs < 1, v > 0 and therefore
A% <1
which means that the scheme is unconditionally stable, for any value of At.

It is important to notice that in the absence of diffusion (E = 0),

BZ + 52

indicating that a unit amplitude wave will propagate retaining the same
magnitude. Thus, the scheme is neutrally stable for simple convection.
The presence of diffusion enhances the stability by making the value of

[A| less than unity.

8.2.2 Amplitude Errors

The presence of amplitude errors 1s easily investigated by the methods
discussed in Sec. 8.1. The true sclution is still given by Eq. (8.14), with

As in place of Ax, and its magnitude is at time t:

- — k?E) = - 2 EAL
|CT| = Coexp( k“Et) Coexp[ (kAs) “n Asz]
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The magnitude of the wave propagated through the finite element grid after

the same period of time is:

2
_ n _ (B-y)2 + 8%
eyl = & " = 1 {0t !

where B, Y, & are defined by (8.29). Using those values, the ratio

]CN|/|CT| is expressed as:

exp[(kﬁs)z.gggl

[ i ///}(4+2cosk&s)-6%%%(1—coskﬁs)]2-P(3 %ﬁ} sinkAs)?

C'I‘ [(4+2coskAs)+ 6 EAt(l-coskfls) B+ (3 _uf?t sinkAs) ?

As?
= 1" (s, %fgv, %%} (8.30)

It is seen that, just as 1n finite difference methods, the accuracy of the

approximation depends on the values of the basic parameters %%% and %&5 .

Table 8.1 lists the amplitude error committed after n = 100 timesteps for
uAt

some wave modes, for s 0.1 and several values of %%% s along with the

true amplitude |CT|’ relative to its original value Co'

TABLE 8.1
Amplitude Error After 100 Time Steps, for uAt/As = 0.1

FAt/As? = 0.05 EAt/As? = 0.10 EAt/As? = 0.15
kAs
legl /el [ leglie, | legl/legl | leglre, {legl/iegl| Teglse,
/4 0.855 0.0457 0.729 0.0021 0.620 0.0001
m/5 0.938 0.139 0.879 0.0193 0.823 0.0027
/6 0.976 0.254 0.940 0.0644 0.914 0.0163
/10 | 0.999 0.610 0.998 0.372 0.990 0.227
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Errors in low frequencies are certainly more important because they
are damped less strongly in the true solution. As seen from Table 8.1,
lower frequencies exhibit the best behavior with respect to amplitude
errors and it may be readily seen from Eq. (8.30) that |CN|/ICT| approaches
unity as kiAs + 0 (i.e., for very long waves). It is also seen that, for
the values of EAt/As? listed, the damping in the approximation 1s stronger
than what it should be. A smaller diffusion coefficient that would eliminate
this error can be determined for a particular frequency by solving (8.30)
with f1 = 1, by trial and error. Considering the approximation of a wave by
linear expansions, it may be argued that a reasonable description requires
8 to 10 grid points per wavelength. Consequently, the highest relevant

frequency that can be modeled is

w3

=1
(kas)max =g or

For the highest frequency, as above, actual limits can be set on EAt/As?
and uAt/As go that the error will not exceed a specified value (say 10%)
for a prescribed number of time steps ( 82 ).

It can be shown that for the regular grid of Fig. 8.1 there is no
spurioué diffusivity introduced through the approximation of the convective
terms. The proof simply involves expanding all concentrations of Eq. (8.26)
in Taylor series about node A. For the one-dimensional case and E = 0, the

equation reduces to

3¢ 3 _
at+U?}Z—0

indicating again that the finite element approximation of simple convection
is free of artificial damping. This conclusion was also derived earlier
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(]l] = 1) and is due to the fact that the finite element approximation is
essentially equivalent to central difference schemes, with spatial accuracy

of order As?.

8.2.3 Phase Errors

With respect to the phase error properties of the finite element metheod,
Orszag (59 ) has investigated the problem of convection in a uniform 2-D
rotation velocity field. His Galerkin approximation is by means of Fourier
series iInterpolation, where 8 or 16 terms are retained. The experimental
results show a behavior superior to typical second or fourth order finite
difference schemes, with almost no phase error at all. This is to be
expected, since the Fourier series provide an interpolation of essentially
infinite order.

In the case of linear interpolation functions and for one-dimensional

flow on the regular grid, the complex amplification factor A is, from

Eq. (8.28a):

_ B-y-i8 _ [(B-y)-18])[(B+y)-id] _ BZ-v*-47-1288
BH+y+id (B+y)2 + §2 (B+y) % + 62

A

Then, the phase 0, defined by Eq. (8.15), is

_ -LmA 288
8 = arctan Re X = arctan E3:§3:EE-

and the ratio of the approximate to the real phase shift is

uht ,
6 _ 1 12 As (2+coskAs)sinkis

= arctan
kuAr uht 9 WAt 2 2
kis As (4+2coskAs)2-36(Eé%)z(l-cosk&s) —Q(EEEJ sin kis
As
EAE uAt
= fy(kbs, 757 5 35 ) (8.31)
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Table 8.2 lists the ratio 8/kuAt in the case of no diffusion (E = ). It
is seen that for pure convection the scheme 1s very satisfactory in terms
of phase errors. The fact that the listed valuves are smaller than unity
indicates lagging phase errors (i.e., the numerical wave lags the true
wave). As can be seen from Eq. (8.31), a positive diffusion coefficient
reduces the value of the denominator,thereby bringing the ratio cleser to
unity. The sensitivity of the ratio to EAt/As? is larger at large wave-
numbers, because of the factor (1-coskhs) 2. Thus, the most erroneous modes
are the easiest to improve. A large value of E would eventually cause the
ratio of Eq. (8.31) to increase beyond unity, creating leading phase errors
(i.e. the numerical wave leads the true wave). By trial and error it is
possible to determine the optimum value of EAt/As? such that f2 =1 for a
particular wavenumber and vAt/As. The ratio 6/kuAt 1s listed im Table 8.3
for uAt/As = 0.1 and for several values of EAt/As?. The optimum value of
the latter is about 0.15 for all frequencies, but in general, the phase

errors are negligible,

TABLE 8.2
Phase Error 8/kuAt for E =0

uht uAt ubt
kAs | Go-=0.1] == =0.2 | =< 0.5
n/4 0.997 0.996 0.985
/5 0.998 0.997 0.991
/6 0.999 0.998 0.994
7/10 | ~1.000 0.999 0.998
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TARLE 8.3
Phase Error 6/kuAt for uAt/As = 0.1

EAt _ ‘EAt _ EAt _
kAs 7sz - 0:05 As? = 0.10 Aoz - 0.15
/4 0.997 0.998 1.000
n/5 0.998 0.999 1.000
7/6 0.999 1.000 1.000
T/10 1.000 1.000 1.000

8.2.4 Spatial Oscillations

The presence of high frequencies in the actual solution, associated
with steep concentration gradieants, is of major importance for the accuracy
of the numerical approximation. The smoother the solution is, the better
its approximation can be with a given grid and order of interpolation. The
existence of high gradients is the solution of the convection-diffusion
equation is associated with
i) The type of the source, i.e. localized or distributed
1i) The relative strength of the dispersion and advection transport

mechanisms.

In general, the error norm for the approximation of a differential
equation of order 2m by a finite element grid of size As and degree of

interpolating polynomials k-1 is given by ( 75 )

alo-o®®, wuf®) < c2ae2 ™ |2 (8.32)
where C is a constant

w denotes the true solution
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As

W is the exact solution of the discretized equations (not including
time integration errors}

|Lu|k is the magnitude of the kth derivative of the true solution,
which is related to the (k—Zm)th derivative of the data f.

In our particular problem, m = 1 and k = 2. Therefore, the error is

a(m—wﬁs, w-l®) S.CzAsz|w]; n CPAs?£| 2 (8.33)

Eq. (8.33) indicates that the spatial discretization error is of order As?
and, as As + 0, the approximate solution will converge to the true solution.
But this conclusion holds only when f is smooth; when it contains a
§-function, as 1Is the case for point sources placed on a node, the error
becomes indeterminate ( 86 ). There are certain techniques for
tackling the problem in the presence of singularities, such as refining the
grid in their vicinity at a rate depending on the order of the singularity,
or including singular functions in the trial functioms { 75 ). While
refining the grid around sources is always helpful, the best way in practice
to avold the problems associated with singularities is to avoid the
singularities themselves. This is done by spreading out the localized
source over several neighboring nodes or elements. O0Of course, if this is
done, one should be prepared not to expect very good results in the immediate
vicinity of the source. Depending on whether that area is of great impor-
tance, the refinement of the grid and the spatial distribution of the
source should be decided.

In addition to avoiding singularities, the next important consideration
refers to the ability of the grid to describe the concentration distribution

and, in particular, the steep gradients that occur at the edges of the plume
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under transient conditions or the vicinity of the source for steady state
conditions. While in the latter case the grid can be refined locally to
better handle the strong concentration gradients; this is not practical in
the former case, for the edges of the plume may occur anywhere in the
domain as long as the common Eulerian approach with a fixed grid is
followed. Clearly, a higher order polynomial interpolation is superior to
a linear approximation for describing the gaussian or exponential solutions
of the convection-diffusion equation. The usual result of the inadequacy
of the grid to accommodate steep gradients 1s the appearance of spatial
oscillations and negative concentrations ( 84 ). Considering first a
steady-state one-dimensional problem on the regular grid of Fig. 8.1,
suppose that
i) due to the presence of a source, the concentrations at C and D are
relatively high, CC = CD = M,
ii) nodes F and G are essentially out of the plume; CF = CG ~ 0, and
iii) nodes A, B and E have approximately the same concentratidn,
CB o CE ~ CA < M.

The downstream advective transport at node A, per unit time, is then

expressed as (see Eq. (8.26)):

uls _ ulsM
ar (cB + 2cC +Cp - Cp - ZCF - cG) ==

while the dispersive transport is

E(2CA -C,.-C

c F) = E(2CA - M)
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At steady state,

ulsM
2

+ E(ZCA -M) =0 (8. 34)
and therefore

DM uhe
Cy =21~ 75 (8.35)

Eq. (8.35) shows that the sign of C, depends on the value of uAs/E. To
avold negative concentrations upstream of a continuous source, at steady-
state, the following condition has to be satisfied:

E 1
whs ~ 2 (8. 36)

This is analogous to the restriction on the grid-Reymolds number required
in finite difference schemes, as discussed in Sec. 8.1. Its applicability
to finite element discretizations has been established through early
numerical experiments on the one-dimensional grid shown in Fig. 8.4 { 44 ),

Under transient conditions, the unsteady term has to be considered.
Assuming the time rate of change of CF’ CG’ CC’ CD small compared to that
of CA = CB = CE‘ the latter being at the edge of the plume, the following
equilibrium equation is obtained from (8.26):

n+l

A -M =0

1 n
+ E uhAsM + E(CA + C

which can be rewritten as:

nt+l 3 EAt, _ .n
Ca L+ 3552 = G

At 3 uit E 1
7) +5 M ( —~2-) (8.37)

1 -2 E
2 As ufs
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If CAn > 0 and since normally 3 EAt/2As? < 1 (see Sec. 8.4), a negative

CAn+1 would certainly require the violation of (8.36). Therefore, a
conservative condition for avoiding negative concentrations in transient
one-dimensional problems is still given by (8.36).

With respect to the downstream zone of the plume, the above results
are applicable,if u is replaced with -u. It is then seen that there 1s no
restriction on E/uAs. In conclusion, for a steady flow, the upstream edge
of the distribution is most liable to exhibit negative concentrations, and
these in turn cause a wave-like pattern of negative and positive values in
space, as in finite-difference schemes (42). A shorr duratiom
loading is in this respect more favorable than a continuous release, because
the solution of the latter has a steep exponential branch upstream of the
source. In the case of tidal flow. both edges of the plume may conceivably
present oscillations. Condition (8.36) must be satisfied by the highest
tidal velocity in the neighborhood of the source in order to avoid negatlve
concentrations,

We attempt now the same kind of analysis for a two-dimensional problem.
Considering the edge of the plume upstream of the source at steady state
and setting

C0 = M, CA ~ CE 2 CC and C, 2C_ =C_ =0,
in Eq. (8.26), we obtain:

uls vAs
EXCA + EyCA + “E—'(CA + M) + dE—-(CA + M) =0
Then,
c M
A 6(E_+E ) (8.38)
1+ —=
(utv) As
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Eq. (8.38) indicates that negative concentrations always exist upstream of
a localized continucus source in a two-dimensional domain. Although the
analysis here is very crude, it should be expected that the two-dimensional
problem will present more difficulties in numerical approximation than its
one-dimensional counterpart. Indeed, the one-dimensional solution for a
point source 1s finite everywhere, while in the two-dimensional case the
solution is not defined at the source. It is essential that such a source
be distributed over several elements, so that very high peaks are avoided,

i.e. M is not too large in Eq. (8.38). 1If, in addition,

Bt E .
(u+tv)bs & (8.39)

the magnitude of (the negative value) CA’ obtained from (8.38); will be suffi-
clently small to be acceptable in practice. Condition (8.39) is quantita-
tively similar to (8.36).

The behavior of the downstream end of the plume can be examined again

by substituting (-u, -v) for (u,v) in Eq. (8.38). One then obtains

N M
A 6(E_+E )
P S A
{utv)As
which indicates that CA > 0 provided that
EX + Ey 1
(e ds > % (8.40)

This is less restrictive than (8.39),
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8.3 Matrix Analysis for an Arbitrary Grid

8.3.1 Time Intepration Stability

As indicated in the previous section, the trapezoidal integration
scheme of the finite element equations for a single layer of constant thick-
ness has the form of Eq. (8.25) in the homogeneous case. Including the

decay term, it expands to:

At At
M+ =5 (R+D+ AJC o= M- 5 (K+D+ é)lgn (8.41)

The matrices involved have been defined for individual elements in Sec. 7.2.

The geometrical matrix (Eq. 7.18)

—

€. ” NN dA (8.42)
G
is symmetrical positive definite and the same is true for the decay matrix,
which is proportional to M° (Eq. 7.23):
p¢ = kJJ NN dA (8.43)
e

A

The dispersion matrix has the form (Eq. 7.22)

K® =1 (E bTb +E bla+E ab +E_a‘a) (8.44)
~ 488 XX~ ~ Xy~ ~ Xy~ ~  Y¥~ ~

and is symmetric and positive semidefinite. Since the system matrices
M, D, K, are composed of symmetric positive definite submatrices, they also

have this property. The individual advection matrix, defined by (Eq.7.20)

i

e.e _ T, 9 3
c” = JJ N [ EE(UC) + §§(UC) ]da (8.45)

Ae
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is not symmetric, however, as discussed in Sec. 7.2. Introducing the

continuity condition for steady but spatially variable flow

Su W _,

d9x = dy

we may rewrite Eq. (8.45)

éege = ” IET(u % + v ?_Qg)dA (8.45a)

Ae

Integrating by parts and summing over all elements:

r A%® =1 {%)NTu Cds - —l—-JJ (bTu + aTv)CdA} (8.46)
e ~ - e ~ N 24© ~ ~

AE

where u denotes the outward normal velocity.

The concentration is expressed in terms of the nodal values through the

expansion

c = nc®
Since this expansion is required to be continuous across inter-element
boundaries, as discussed in Sec. 7.1. and since compatible velocity expan-

slons are used in developing the circulation field, it ig seen that the line

integral vanishes on the interior boundaries. Therefore,

£ a%¢° = I NPTy cas - 5 -1 ” (bTu + alv)CdA
g =z ~ n € ope Mg ~
s A
T T
3N
- J bT, wPdas cP- & ” ( 2= 4 + = vNdA ¢ (8.47)
~ ~ ~ e, ox ay -~ -

S A
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Noting that by introducing the expansion of C in (8.45a) this takes the

form

. N
%" - II N (um+ v 3o ¢ (8.48)
and combining (8.47) and (8.48), one obtains:

e -

L a%° = - 3 a7 c® + J NbTuands cP
S

or, for the system matrices:

AC = - ATC + J NbTuands cP (8.49)

The line integral is restricted to the part of the boundary, %q’ where the
dispersive flux is specified, because the weighting function vanishes om
the segment Sc with specified concentration (Sec. 7.1).

Usually, %1 corresponds to the land boundary and there should be no
velocity normal to it. Then the line integral of (8.49) vanishes entirely

and the equation reduces to

A= AT (8.50)

Eq. (8.50) indicates that the advection matrix in this case 1is purely
skew-symmetric. This result is very important for a general stabllity
analysis of the numerical scheme, as will be seen shortly. In addition,
it is seen from Eq. (8.49) that the symmetric part of the advection matrix
is associated with these portions of Sq where the normal velocity 1s not

zero. These may represent river or estuary outlets or parts of the ocean
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boundary where the gradient rather than the concentration itself is
specified., This is commonly the case for outflows from the domain of
interest {(see Sec. 2.3}. Since un > 0 indicates flow outwards, such a
flow implies a positive value of the line integral of (8.49); Setting,

in general,

é = és + éss (8.51)

where és denotes the symmetric part of é and éss denotes the skew-
symmetric part of A, we may now proceed to the examination of the stability
of the trapezoidal integration scheme of Eq. (8.41),

The concentration vectors at times t and t + At can be related by

writing

C =acC (8.52)

where a the (complex) amplification matrix, analogous to the amplification

factor of Sec. (8.1). One may set, however

¢ =A% , for alln (8.53)

~T1 ~
where ¢ an arbitrary vector (of the same dimension as C)

~

Substituting in (8.52):

RQ = a¢

or

(a ~AD)¢ =0 (8.54)

This implies that the expression (8.53) is possible, provided A is an

eigenvalue of the amplification matrix a.
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The necessary condition for stability is ( 68):
lafl < 1 (8.55a)
or, equivalently

Al < 1 (8.55b)

Substituting the expression (8.53) for Cn and €1 in (8.41), and pre-

multiplying both sides by ¢T, one cbtains:

ST+ EE R +D+ A = ¢ M-5F K+D+ )] (8.56)

¢TMo = m > 0 (8.57a)
T

¢$'Dp=d>0 (8.57b)
. |
9K =k 20 | (8.57¢)

For the advection matrix, A, one can write
T
b A = a_ + ia s (8.58)

where a_ is related to the symmetric part and

ST to the skew-symmetric part of A.

Then, Eq. (8.56) yields:

st Iy

A= n - 2(K+d+as) L7 Pss
At . At

m g lerdtag) * 17 2
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or,

(m - L (crdta )]2 + AL a 32 .
2 s 2 Tss (8.59)
At 2 At 2 )

[m + 7?(K+d+as)] + (?r ass)

A2 =[] =

In the most common case that a_ = 0, Eq. (8.59) clearly shows that

%<1
for any value of At., That is, the time integration scheme is unconditionally
stable for an arbitrary grid.

The value of a, may be different than zero only when there are parts
of the boundary where the concentration gradient is prescribed, instead of
the concentration, and the normal velocity does not vanish. Since, from

(8.49),

it is seen that a_ has the sign of U, Thus, when the normal velocity is

outwards, a > 0 and Eq. (8.59) still implies that

A <1
Actually, the stabllity is enhanced in this case. However, when the normal
velocity is inwards, a < 0. Then, the stability of the scheme depends on
the relative magnitude of a compared to K+d. In the unlikely event that
ag dominates, a value of {A| larger than unity is implied. This analysis
fits nicely with the considerations on boundary conditions (Sec. 2.3),
where physical reasoning indicated that the concentration gradient should

be prescribed only in outflow boundary segments, while during inflow the
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specification of the concentration is more appropriate. If this 1s done,
ag > 0 and the unconditional stability 1is maintained. Further, a small
negative value of a_s associated with a small inflow boundary segment,
should also be acceptable in practice, being offset by the magnitude of

K+d,

8.3.2 Iteration Convergence

The feature of unconditional stability makes the scheme (8.41)
extremely attractive to use, provided that E, D and A are actually constant.
When they are variable, however, a new matrix has to be inverted in every
time-step and this would become uneconomical for large problems. Therefore,
as discussed in Sec. 7;3, an iterative scheme is employed in this case.

That is, Eq. (8.4l1) is written as:

el -t e p e - F KD o (560
The condition for the convergence of the iteration is (89):

B %E (K+ D+ A)n+1|| < 1 (8.61)
Dropping the subscript, this implies:

bt < 2 (8.61a)

¥ @ +p+a

Since the morm of a sum is less than or equal to the sum of the norms, a

more restrictive condition can be cbtained, i.e.

e < —— 2 - (8.62)
M Al + 1w ||+ [F o
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This 1s a sufficient condition and is conveniently expressed in terms of
the individual ratios of the various matrices to the geometrical matrix.
It indicates that, because of the iteration, the choice of the time step
cannot be arbitrary. Thus, there is a trade-off: the advantage of
unconditional stability is lost in the attempt to handle time variability
of parameters and inputs more economically. In problems where there is
such variability, the advantage gained is considered more important than
the one lost, since the time step would be limited anyway from consideratiouns
of resolution of the description of the phenomena.

A slightly sharper condition than (8.62) can be obtained by setting

in Eq. (8.60)

g(ii = A*i@ , for all i (8.63)

in a way analogous to (8.53) used for studying the stability of the scheme.

* *
Now, A are the eigenvalues of matrix a , defined by

(1+1) _ * (1)
Coyt =2 C 19 (8.64)

The condition for iteration convergence is expressed as

*
7] <1 (8.65)
Eq. (8.60) yields, after neglecting the constant term

*

At K + d + as + ia
A=y

SS (8.66)

m
where , d, m, a , a ., are as defined in (8.57) and (8.58).

For the usual case that a, = 0,
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*

A | = Sy 4 (os 55) j1/2

2
and therefore, condition (8.65) is satisfied when

2
[y 4 (Tssy2yl/2

At < (8.67)

Since the scalars in the denominator of (8.67) essentially represent
the eigenvalues of the corresponding matrices, and the eigenvalues are

commonly used as measure of the matrix norm, it can be argued that

</m o~ | WK (8.68a)
d/m ~ | o bl (8.68b)
lag o 1Y Al (8.68c)

Thus the restriction on At imposed by (8.67) is expressed in the same

terms as (8.62), i.e. the ratios of magnitudes of the matrices involved, as
expressed by their eigenvalue norms. However, it can be readily seen that
condition (8.67) is less conservative than (8.62).

Yet, neither condition is practical in this form. This is because the
norm expression is rather abstract and the eigenvalues have to be derived
through long machine c¢omputations once the matrices are formed. Thus, one
does nct have an explicit relation between the time step and the parameters

of the problem. Such a relation is derived in the next section.

8.4 An Approximate Criterion for the Time Step

Starting with the definitions of the matrices involved, we will attempt
now to transform the right-hand side of (8.62), and (8.67), to an eagily
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tractable, though approximate, form. The system matrices appearing inm the

previous analysis all consist of sub-matrices associated with the individual

elements of the solution space. The matrix eigenvalues, the most common

type of norms ( 20 ), can be easily evaluated at the element level.

Provided there are no drastic changes in the grid or the parameters over the

domain, the conclusions reached at the element level can be generalized

for the whole area. In any case; if (8.62) or (B.67) is satisfied for the

"worst" element, stability and convergence of the whole scheme is implied.
Expressions of the element ﬁatrices were presented in Sec. 7.2,

Dropping the superscript e for convenience, we summarize below the various

terms:

i) The Geometrical matrix is

2 1 1
_ A
Dj =17 1 2 1 (8.09)
1 1 2
Therefore
3 -1 -1
-1 _12 1 | .
E =2 4 1 3 1 (8.69a)
-1 -1 3

ii) The Dispersion matrix is, for isotropic conditions (Epy = Eyy = E):

-1 T T
K=g5 EbB+E20)
_ \ \ _
bl + al blb2 + ala2 blb3 + ala3
= £ 2 2
i blbz + a3, b, + a, by + a,a, (8.70)
2 2
b1b3 + ala3 b2b3 + a2a3 b3 -+ a3
L =207~ =




Noticing that products of the form bibj + a.a, represent the inner product

1]

of ﬁsi, &sj considered as vectors, K can be further written (see Figure 8.2)

~

_ ) ) -
Asl —Aslﬁszcosﬂ3 Aslﬁs3c0392
- E - 2 -
§ = %A AslAszcosBB Asz Aszﬁs3cosel (8.70a)
. _ 2
—AslAs3c0562 ﬂ52As3cosﬁl As3

iii) The Advection matriz, for uniferm flow (u.v), is:

(2 1 1]
A=+ |1 2 1| whb+va -
~ 2 2T IC
1 1 2
- .
2 1 1 1
1
=55 11 2 1 1 | (ulby by byl +vlay ay a3D)  (8.71)
1 1 2] [1

Since ubi + va; can again be considered as the inner product of the

velocity vector and a vector of magnitude Asi having the direction of

the inwards normal to the element side, the above expression takes

the form
2 1 1 1 [Aslcos¢1 &32c03¢2 As3cos¢3]
U
A= 55 1 2 1 1 {8.71a)
1 1 2 1
1/2

where U = (u? + v?) is the velocity magnitude.
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iv) The Decay matrix is

2 1 1

O R A (8.72)

D=7 = Xz g
101 2

One may now proceed in formulating the matrix products appearing in

(8.62). It is first notlced that

3 -1 ~1 1 1

NS T I T

E’I A -1 3 1 _T 1—4 1 1 1
-1 -1 3 1 1

Due to the fact that each column of K adds up to zero, as seen from (8.70),
-1
only the first part of the above decomposition of M will give a contribu-

. -1 . .
tion to M K; since this is the identity matrix,

[\

-1 _'l_
M K=K (8.73)

For an equilateral triangle

1 2 3
-— — —_ o
Bl = 82 = 83 60
2
A = As?V/3
A
Consequently,
2 -1 -1
-1 _ 12 EAs?
M X=7 "o Loz
-1 -1 2
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The eigenvalues of the matrix are 0,3,3. Therefore, a conservative bound

on At will be obtained by using

-1 _ _12Eps? _ E
IRl = =5 3= 28 32 (8.73)
—~ - S(E As )

-1
A less conservative estimate cam be obtained by using for | M K[| the
average of the three eigenvalues, bearing in mind that (8.62) is already

more restrictive than the actual conditilen (8.61la). Then,

_ 2
k|| = —22EBe 5 _ g6 I (8.73a)
~ ~lav 3 L
8(57 Bs )

Alternatively, for a right triangle

Asl = Vs, Asz = ASS = As
81 = 90 82 = 63 = 45
2L a2
A= 2 As
Consequently,
2 -1 -1
_ EAs?
K = ZA -1 1 0
-1 H 1

The matrix eigenvalues are 0, 1, 3. Therefore

2
[ e s (8.74)
T 4(7 As™)
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~ 12EAs? 4 E
o'k = =202 <16 =5 (8.74a)
~ ~May 4(%_ﬂsg) 3 As?

The latter is exactly the same as (8.73a).

Eqs. {8.69) and (8.71a) imply that

-1 12 © 1
M é-_.Tﬁ 1 [Aslcosdbl Aszcosdzz As3cos¢3]

The norm of M 'A can be obtained as the product of norms of the vector
and row matrices in the above expression. Consistent with using eigenvalue
norms for the square matrices, the Euclidean norms of the vector and row

should be used, i.e.

|!§_]§H = %% V3 ¢h512c032¢1 + &522c092¢2 + AS32C°32¢3 (8.75)

According to Figure 8.2:

¢2 ¢l + m-0 —F cos¢2 = —cos¢l c0583 - sind)1 sin93

3

b4 ¢l - (ﬂ-ez) — cos¢, = —ces¢l cos®, + sin¢l sinb,

Then, for an equilateral triangle, Eq. (8.75) becomes:

-1 U 2 1 2 3 2
Al = —— = 2
||¥ ~|| 2(13 s /3As Véos ¢1 + 2(4 cos ¢l + % sin ¢1)
4
that is,
I af=2 /21 (8.76)
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For a right triangle Eq. (8.75) gives

[[MF1A||= ——EJL——— V3As /5c052¢1 + 26% cos?¢ +1 sin2¢.)
- 2(5 As?) 12 1

-1 _ _'[:L
| ¥ All = V3(2cos?¢, + 1) 13 (8.77)

This expression indicates that the norm is not uniquely defined, but depends
on the orientation of the triangle with respect to the flow. The worst

case is obviously obtained when ¢l = 0° or 180°, i.e. when the flow is

normal to the hypotenuse, yielding

-1 _ L
v Al =35 (8.77a)

When the flow is parallel to one of the legs of the right angle, it is

¢y = 45° and therefore
1l = b _,/3.1
|4 "all = ‘/G_As -2/;AS (8.77b)

which 1s exactly the same as (8.76).

Finally it is evident from (8.72) that

v 'pl] = k (8.78)

According to the above, the criterion (8.62) can be rewritten in a

variety of ways, depending on the element shape and orientation and the

degree of conservatism desired. Thus, the absolute lower bounds are

given by
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At < (8.79a)
/3L p1p B Lk
As As2 2
At < 5 L T a— (8.79b)
30 L 8-E 4k
2 As As? 2

for equilateral and right triangles, respectively. Although the latrter
appears to be stricter, the different definition of As has to be taken into
consideration. Using the average value of || gﬁlgﬂ,the condition becomes
the same for both triangle shapes, provided the flow is parallel to one of

the legs of the right trlangle ;

(8.80)

Alternatively, using the same matrix measures in the sharper condition

(8.67), we obtain

1
3 1. Y
/ (§A8)2+ S v

At <

(8.81)

which is, in general, less conservative than (8.80) by at most 40%.

In modeling applications it is usual practice to design the grid with
approximately equilateral triangles, avoiding angles in excess of 90°.
Although a general criterion cannot be given for an arbitrary grid except
in the "abstract" way of Sec. 8.3, it is believed that either of (8.80) or
(8.81) should provide a good starting point for defining the time step in

any given problem. The primary value of these criteria, irrespective of
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the exact numerical coefficients, lies in the inclusiomn of all relevant
parameters in a single expression. It is seen that the non-dimensional
groups cof interest are again EAt/As? and UAt/As, while kAt has to be also
considered, 1f there is decay. So far, the effect of the various parameters
has been examined separately, if at all, and only by numerical experimen-
tation because of the inherent difficulty of a strict thecretical analysis
to proceed to practically meaningful results. Thus, it has been suggested
(44) that for satisfactory time integration using the same iterative

scheme, the following conditions should both hold:

Ag? As
At <m and At < 100

These bounds are significantly stricter than (8.80), especially with

respect to advection.

Other criteria, given for explicit finite difference schemes, are of
interest in comparison to (8.80) or (8.81). Some of them were presented

in Sec. 8.1. For 1-D problenms,

Ax?
ﬁt<—é—i-
At < A%
u
At < ——t——
2_E + 2
Ax2 Ax

while for 2-D problems,

-214-



At <
1 1
ez + gy?)
At < —2
e v
Ax Ay
1
At <
1 1 u v
ZE(sz + Ayz) t Ax + Ay
LM Ay A
At < min { = o T }

Using typical values of coastal environments:U = 10 cm/sec,

-1
E = 30 m?*/sec, k =1 day , As = 1 km, condition (8.80) becomes

At < 2718 sec

while (8.81) gives
At < 3644 sec

Thus, the restriction caused by the iteration still allows reascnably

large time steps, in view of the desired accuracy of representation of the
tidal variation of the flow field, Usually, the effect of decay 1s consider-
ably less than that of advection and dispersion, which are, in general, of
the same order of magnitude. It should be mentioned that, in problems

with significant spatial variations, the largest values of E/As? and U/As

are those limiting the time step. Clearly, a refinement of the grid in a
certain area for better resolution leads to higher values of these ratios

and consequently a gmaller allowable time step. It may be also seen that,
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in a certain grid, stability problems are most likely to arise during
periods of strong currents, since U/As and also E/As? are then larger.

A comparison of (8.80) and (8.81) to time steps actually achieved in
one-~ and two-dimensional problems, that establishes more confidence in the

gsimple theoretical results, follows in the next section.

8.5 Experimental Results

Conditions (8.79a,b) or (8.80), limiting the time step, can be written

in the following general form:

UAt EAt

‘,ul'-ﬂ-s—'l-uzﬁ-s—ii'ua kKAt < 1 (8.82)

Considering the non-dimensional parameter UAt/As, EAt/As® and kAt as
Carterian coordinates, the inequality (8.82) implies that an "acceptable"

point in that space must be between the plane

At EAt _
My as T Hy ez T Hg KAt =1

and the coordinate planes. In the absence of decay (which usually gives a
negligible contribution anyway), the space is reduced to two dimensions.

Using the values of the constants Hys Hy pertaining to (8.80), one obtains:

AL EAt
l.ZZE +8&S—2 < 1 (8.83)

Similarly, condition (8.81) may be written as follows:
HAg, 2 Edtyo2
(1.22 £92 + (8 2P < 1 (8.84)
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While (8.83) determines a theoretically "safe” area on the plane

(%ﬁf—’ %éﬁb bound by a straight line, (8.84) indicates an elliptical
boundary which entirely contains the previous area. Thus, (8.84) is less
UAt , EAt

conservative, extending the admissibility of combinations (75;- E;;O over
a larger part of the plane. Both boundaries are drawn in Figure 8.3.

Given the parameters E, U and the numerical discretization At, As of
a problem, the two ratios can be formed and the location of the point
corresponding to their coordinates can be found. 1If it lies within the
safe region, there should be no difficulty with the convergence and
stability of the solution.

A large number of runs was carried out on the one-dimensional grid
shown in Figure 8.4. A point source was simulated by loading the three
nodes marked with dots. Most rums involved continuous releages, but
instantaneous injections were also made. TFor each run the corresponding
point was plotted in Figure 8.3, in an effort to establish the extent to
which the theoretical result of (8.83) or (8.84) is valid in practice. In
the same figure, the line E/UAs = 1/2 is drawn. This represents the
theoretically lowest ratic, below which negative upstream concentrations
cannot be avoided in one-dimensional problems (Eq. (8.36)).

In Table 8.4 the various symbols used in Figure 8.3 are explained and
the classification of runs is made with respect to the iteration convergence
behavior and the presence or not of significant spatial oscillations in

the solution.
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Figure 8.3 Comparison of Theoretical Bounds on the Time Step with 1-D Runs
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TABLE 8.4
Definition of Symbols Used in Figures 8.3 and 8.6

Error After Negatlves as
Symbol 10 Iterations |Percent of Peak Remarks

O < 1% < 10% Good, smooth solution

® < 1% > 10% Iteration converges well, but
result exhibits oscillations

A < 10% < 10z Iteration error goes down

A < 10% > 10% rapidly as time proceeds

t > 10% < 10% Iteration does not always
decreagse rapidly (some may

i > 107 > 10% eventually blow up)

& - - Blows up

The most important conclusion from Figure 8.3 iz that all runs that
exhibit more or less serious preoblems with respect to iteration convergence
lie outside the "safe" region. Actually, not too far from the elliptic
boundary there are points representing runs that rapidly became unstable.
Points closer to that boundary, but still outside, generally present
iteration convergence errors of 20 to 75%, decreasing more or less slowly
over time. Since there is a limit of 10 iterations per time step in the
program, we cannot say whether these runs would eventually blow up, if
allowed to continue iterating., Apparently, when the iteratiom is stopped

with a small error, the behavior tends to improve over the next time steps.
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0f course, these errors are accumulated in the solution. Runs between the
two boundaries defined by (8.83) and (8.84) present, interestingly,
"acceptable" errors of less than 10%, which actually are rapidly diminish-
ing in subsequent time steps. Finally, runs within the inner boundary
generally converge very easily, with errors less than 1%. It appears also
that—since the time step increases along rays originating from the origin,
for constant values of E, U, As—slightly better time steps can be achieved
in the interior rather than close to the axes, especially the advection
axis. This may just indicate a slight bias of the theoretical criteria;
however, these do not seem to be too conservative in view of the relatively
large errors involved in the rums outside the boundaries. On the other
hand, certainly the extreme conditions (8.79a,b) are too restrictive.

The other important result of the experiments is associated with the
accuracy condition (8.36). It is seen that the line EfUAs = 1/2 exactly
separates the regions where runs do or do not show appreciable upstream
negative concentrations and spatial oscillations. These oscillations
become more severe near the x-axis, as the ratio E/UAs diminishes and they
are practically eliminated as E/UAs increases slightly above 1/2.

Data from various runs on two-dimensional test grids, such as that of
Figure 8.5 and of (%44), as well as two-dimensional grids of natural water
bodies, such as the Massachusetts Bay (Fig. 9.5 ), Plymouth-Duxbury Bay
and adjacent area (63), Great Egg Harbor, N.J.etc., have been compiled
and plotted in Figure 8.6. The meaning of the various symbols is the

same as in Figure 8.3. In the test grids the flow is uniform along the
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Figure 8.6 Comparison of Theoretical Bounds on the Time Step with 2-D Runs
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x-axls and the dispersion only lateral, in the y-direction. In the appli-
cation runs actual velocities, obtained from a compatible finite element
circulation model (86), variable in space and time, are used. In view

of this variability, the point having the largest sum of 8 %§§-+ 1.22 %é}
should be examined. If there is a location where this sum ig much

higher than over the rest of the domain, eg. caused by high velocity in a
narrow zone, it might not be crucial for the stability of the whole scheme.
Indeed, the point on the far right of Figure 8.6 is associated with such
locally high velocities. However, points closer to the theoretical boundary,
corresponding to high velocitiles over extended areas,indicate that the
solution blows up. It is significant that all runs within the theoretically
safe area do not present convergence difficulties. The boundaries can only
be considered to be approximate in this case, since they are derived for
one-dimensional conditions. Thus, good convergence may sometimes be
achieved outside these limits. Furthermore, accuracy of the solution is
more difficult in the two-dimensional case and appreciable oscillations can
show up even when E/UAs > 1/2., Indeed, some of the runs denoted by white
circles exhibit negatives close to 107 of the peak. It is very interesting
to note that there are two palrs of points having the same coordinates but
different behavior. This 1s solely due to different source distributions.
For example, both points (0.17, 1.11) represent continuous releases at the
origin of the grid shown in Figure 8.5. Imn one case the source was
distributed over two elements, while in the other over eight elements.

The dramatic improvement in the numerical solution can be seen in Figure
8.7. Upstream oscillations are practically eliminated in the second case.

These observations are in agreement with the theoretical arguments of

Sec. 8.2.4. —295-
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In the above, the contributlon of the decay term (kAt/2) was of the
order of 0.01 or less and thus neglected, If it becomes significant, it
has, of course, to be taken into account by displacing inwards the limit
of the safe region.

The general conclusion from the experimental results is that the
theoretical bounds are very satisfactory for one-dimensional problems and
still reasonably valid in a two-dimensional domain with constant or
variable flow field. These bounds are appropriate not only for coastal
dispersion problems but also for other dispersion problems. Condition
(8.80) has been successfully applied to groundwater problems (71).
Unfortunately, both theoretical and numerical results indicate that
accuracy considerations significantly reduce the area of acceptability of

combinations (UAt/As, EAt/As?) to a fraction of that required for iteratiom

convergence,

8.6 Stability of Two-Layer Model

It was shown in Sec. 7.2 that the discretized equations take the form
(7.31a,b) under certain conditions. Considering the homogeneous case,

their form is:

1:191 + A Cl + K Cl + 21‘:1 + E(C C Y =0 (8.85a)
MC. + A.C +KC +DC2+E(C C)=0 (8.85b)

— ~222

where the subscripts 1, 2 refer to the layer indices for an individual

element, the intefacial diffusion matrix is expressed by (Eq. (7.26)):
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(8.86)

]
Q-.
<4

The two equations (8.85a,b) are integrated successively by using the

trapezoidal rule, as discussed in Sec. 7.3. That is,

At At _
M +57 (R + Dy + 4 +E) 511G 041”7 Eannl2,nn ©

~

- At At
- [E -3 (E + 91 + él + E)n] El,n +3 §n92,n (8.87a)

At At ~
M+ 5 Ky + D, + 4, +E) 01 C i1~ 7 BnCipnn =

_m o At At
= M- K, +Dy + A, +E) 1C) +5EC | (8.87b)

Assuming for simplicity that the various coefficient matrices are constant

over the time step, the above equations can be rewritten in compact form:

X Gy =88, (8.88)
where
c — gl,n+1 c = El,n
~n+1 ’ ~T11
Cy,n+1 Ca.n
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0
]

Matrices

where

i At At

M+ S5 (K +D) +4 +E) -3 E
_Atg M+-Q-E(K + D, + A, + E)
2 = ~ 3 Mz T L2 T2 <

M—A—;-(K + D, + A, +E) +ATtE
+92-t-E M-ATt(K + D, + A +§)

X and ! can be decomposed as follows:

~

B+—A§E(F +F. + 6

B- S 40
fu o
| @ M
i Ky + Dy Q
B K + 2
o
° A,
g i
Y
R

-227-

(8.89a)
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(8.90a)

(8.§0b)

(8.90c)
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Matrix G is singular and therefore its eigenvalues are the same as those

of E. The latter, being composed of individual positive definite matrices

~

Ee, is itself positive definite. Furthermore, matrices B and F1 are also

"

gymmetric, positive definite., Finally, if both advection matrices Al and

A, are skew-symmetric, which is usually the case (Sec. 8,3.,1), F2 will be

~2
skew-symmetric, too.

Writing now, as in the one layer case

c_ = A“g , for all n,

substituting in (8.88), and premultiplying both sides by ¢T, we cbtain:

A¢[B+2(F + F, + Gy ~2)]¢-¢[-‘%(gl+§2+c—c}2)]¢

~2

(8.91)

According to previous considerations

where the various numbers are, in general, different from those of (8.57)

and (8.58), and usually a_ = 0, Egq. (8.91) implies:
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At
m 2 («c+d+ce+ a, + iass)

l=m+%£(|<+d+e+as+iass)
or,
2. [m-ﬁz—t(ic-i-d-l'f:'i-as)]z + (% ass)2 5.9
[m +-%§ (k+d+¢e+ 33)]2 + (%f—ass)z

This is analogous to the one-layer result (8.59) and indicates that the
interfacial exchange, expressed by €, which 1s positive, is a stabilizing
mechanism for the twe-layer system. When as Z 0, the integration scheme
is unconditionally stable. Problems may arise in the unlikely case that
a acquires large negative values, as discussed in Sec. 8§.3.1. However,
now a negative ag has to be larger in magnitude than in the one layer
case in order to cause instability, because of the presence of E; The
stabilizing effect of the interfacial exchange (in the absence of net
entrainment) should have been expected on physical grounds: when the
concentration in one layer tends to increase, the diffusion of material
to the other layer through the interface is enhanced. Thus, this exchange
helps in "damping' high concentrations and exerts a restraint on perturba-
tions of the numerical solution tending to grow without bound, that
would eventually lead to instability. Nevertheless, in the present
two-layer idealization, the rate of exchange is usually small and its
effect cannot be too significant.

Despite the unconditional stability of the time integration scheme,

the iterative solution actually used imposes again a restriction on the
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time step.

According to Sec. 7.3, the iteration proceeds successively to

the next layer, using the most recent values of concentration in the

previous cne. That is,
(i+1) At (1) At (1)
M0, 01 5 (Ky + D) + A +E) 50 a1l ¥ 7 B a1
(1+1) At S, A (1+1)
MCo 1 7 Ry + Dy + 4 +E) 10 ne1 T2 Ennalian

where Ql’ Q2 are quantities known from

oy At
@ =M-F & +D +4 +B 18,
Q, = M-2E k +D, +4, +E) ]C
32 ~ 2 = ~ ~2 ' ~’n’ ~2,n
Eqs. (8.93a,b) can be together written as:
) " )y Q
where
C(i+1)
(1+1) _ ~l,n+l , C(i) -
h C(i+l)
~2,n+1
M 0
R =
~ At
T2 §n+l g
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the previcous time step:

At
+ 5 Bl

At
+ 2 F-'ngl n

)
~1,ﬂ+l

(i)
2,041

+Q

(8.93a)

+Q,

(8.93b)

(8.94)



At At
-~ By A A By 7 B
]£ =
At
° =5 Ky + Dy + 4, + B
Convergence of the iteration (8.94) requires, in general:
I8l < 1 (8.95)

The matrix R can be written as a product,

=
1o
.
1o

o
=
l
|
=
&
L

and its inverse is then:

1 o M o
-1 - - = -~
R =
- At =1 -1
5 ! §n+1 E ° E

-1
Since both R and ¢ involve triangular matrices, their eigenvalue norms
are conveniently expressed in terms of their diagonal elements. Thus, the

condition (8.95) 1s equivalent to:

-1 At
IM" 5 &+, +4, +B) Ll < 1
implying
At < —— 2 (8.96)
bk + 0y + 4y + Bl
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or, in more conservative form

2
= =
T Al + 1 ]

At < (8.97)

= =T
Iw ok I+ o]

Conditions (8.96) and (8.97) are entirely analogous to (8.6la) and (8.62),
respectively, the only difference being in the introduction of the inter-
facial diffusion term, due to the exchange between the layers. From (8.86)

it is evident that
']l = o (8.98)

where the constant o' may be spatially and temporally variable and, of
course, depends on the stratification. The magnitude of the other terms
appearing in (8.97) has been examined in Sec. 8.4. Using those results,

the bound on the time step can be approximately written:

; 1 =1,2 (8.99)

At <

1
U E
3 i i k ol
fn;”rsz oty

Usually, as discussed in Chapter 4, the value of o' is expected to be of
the order of 10_5 or smaller, and its contribution in limiting the time
step will therefore be usually marginal. As (8.99) shows, At is basically
limited from the flow conditions in the individual layers, in particular
the fastest flowing layer.

These conclusions can be easily extended to multilayer models which
can be examined by a similar procedure. Condition (8.9%), applied for

the "worst" layer, should yield an approximate bound for the time step
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applicable to the whole system. Exchange to two neighboring layers has
now to be considered and the coefficient of o' must he doubled. More
importantly, because the layers in such formulations are often separated
by only small density differences, the exchange through the interfaces
will not be necessarily small and its contribution in limiting the time

step may become significant.
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CHAPTER 9

VERIFICATION AND APPLICATIONS

Model verification is necessary 1in order to establish its
validity for describing the phencmena it has been developed for.
With respect to numerical models, the first step in the verification
process is to check whether the governing equations are being solved
correctly. This is essentially an evaluation of the numerical
approximation and involves comparison of the numerical results to
analytical solutions. Clearly, the range of comparison is limited
by the availability of relevant analytical expressions; these
are restricted to problems involving simple geometry and flow
conditions.

To establish confidence in the predictive capability of a
model, further verification, consisting of comparisons to real-
world cases, is necessary. This step is extremely important in
providing an idea of the soundness of the conceptual idealization
of the physical processes and the degree of applicability of the
model under natural conditions. The agreement can never be
expected to be perfect, because of the high complexity of actual
hydrodynamic processes and the difficulties in obtaining reliable
field measurements in the coastal environment., The quality of
and the uncertainty involved in input data should always be
considered when judging the model output. The compatibility of

available data to the model idealization is an issue that also
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deserves some thought. For example, if a meodel gives depth-
averaged concentrations, some averaging of data taken at different
points through the water columpn is necessary for the comparisons
to be consistent.

Even if the measurements were perfect, simplifications
introduced in model formulation can still prevent good agreement,
With respect to the dispersion problem, the solution of the
convection~diffusion equation represents the ensemble average
concentration field over a small time (At) and space (Ax, Ay, Az)
interval (in the case of a layered structure, Az will be the total
layer depth). However, at any point, there is always a natural
variability about this "average" value. This issue has been
addressed conceptually by Csanady (16), According to his dis-
cussion, deviations from the average value by a factor of two or
three can well be due to these natural fluctuations and have
actually been observed in the central regions of plumes in the
atmosphere. A further complication arigses ar the fringes of the
plume, where there is a substantial probability that in a given
sample there will be zero concentration. The so-called "inter-
mittency factor" is introduced to describe this probability, but
its estimation appears to be hopeless.

In view of the above comments, model comparisons to field
studies have to be evaluated not as an attempt to achieve a perfect
fit, but rather as an indication of the ability of the model to

reproduce certain key quantitative features of the data, such as

-235-



the general direction of the plume, the peak values and the extent
of its boundaries (defined by concentrations significantly higher

than ambient).

In this chapter, comparisons of the two-layer model to
analytical results obtaimed in Chapter 5 under idealized flow
conditions are presented first. The gemerally good agreement
proves the correctness of the model structure. Subsequently,
the application of the model to two large scale field experiments,
conducted in Massachusetts Bay under summer conditions, 1is

discussed.

9,1 1-D Verification Studies

The grid used for the one-dimensional comparisonsis shown in
Figure 8.4, The first test is for the transient behavior of the
system after an instantaneous release simulated as of one timestep
duration. A unit load is distributed between the three nodes at
x=0 and the results adjusted to yield values per unit width of
the channel. No longitudinal spreading of the source is necessary
in the 1-D examples and consequently the simulation should represent
a point source quite closely. A unit depth 1s assumed for each
layer. Zero concentration is specified at the ends of the grid,
while zero flux 1s prescribed along the side boundaries. Table 9.1
contains a summary of the parameters considered. The value of the
interfacial mixing coefficient, 5 x 10—4 sec_l;immlies that the

small time approximation of Sec. 5.1 is valid for a time period of
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about 100 sec. However, to avoid the plume reaching the downstream
end of the grid, the comparison is made at time t=10 sec. As
Figure 9.1 shows, the agreement is extremely good. The only dis-
crepancy, at the upstream edge of the plume in the lower layer,
is due to the proximity of the grid boundary. The value of the
ratio EfUAs (= 1.6) was chosen larger than 0.5 to ensure a smooth
numerical scolution, as discussed in Section 8.2.4.

Table 9.1

Parameters Used in Verification Studies

Parameters 1-D Instantaneous 1-D Steady State |2-D Steady State
U1 = -U2 0.05 m/sec 0.05 n/sec 0.05 m/sec
E =E 0.01 mzfsec 0.01 m2/sec 0
X X
1 2
=E - - 0.001 m2/sec
Y. Yy
Hl = H2 Im lm 1m
k 0 0.2 sec ™ 0.2 sec t
-4 -2 -2
o 5x10 * m/sec 510 © m/sec 5x10 © m/sec
M 1 unit - -
m - 1 unit/sec 1 unit/sec

It is seen from Figure 9.1 that for the value of & used,
which is somewhat higher than values to be expected in nature, the
lower layer concentrations are two orders of magnitude smaller than
those of the top layer. This observation supports to some extent

the treatment of the interface as a barrier. However, it may not
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hold for longer time periods and is certainly not valid for
substances possessing vertical mobility. Irrespective of that,
it should be clear that a great advantage of the two-layer model
1s the more detailed description of the velocity field. In this
particular counterflow case, a depth averaged treatment would imply
zero overall velocity and therefore predict a stationary peak of the
depth-averaged concentration distribution located at the origin
and having a magnitude approximately half the actual upper layer
peak, Thus, as shown in Figure 9.1, the solution for the depth-
averaged velocity field is far from the actual depth-averaged
concentration distribution of the two-layer system.

Next, the behavior of the model at steady state is examined.
A high decay coefficient is specified to speed up the arrival to
steady state and also to keep appreciable concentrations away from
the boundary. The parameters used (Table 9.1) are mostly the same as
in the transient test. A higher interfacial mixing coefficient
was specified here so that the exchange between the layer would
be more pronounced, The comparison with the analytical expressions
of Section 5.2 is shown in Figure 9.2 and the agreement is, again,
quite good.

Runs with no interfacial mixing were algo carried out for
testing purposes and the results for each layer were identical

to those of the one layer model, conducted earlier by Leimkuhler (43).

=239~



UOTINGTIISTQ 330§ Ape23s (-1 Z'6 2anI1d

=TAl| Q0’l GLO Ge0 TAN o0 SO o050~ SLO~
X - + > + + + i +
0 10¢
. TOF
5 103
iy .h
uolInjog [edriLfeuy . ook
213LeT WOII0E ‘TOPOH ® @ @ . .
.- 20l4 2

aaien doj ‘TapoK O o o

=240~



9,2 2-D Verification Studies

To examine the validity of the model for a two dimensional
domain, a verification was attempted for a continuous source in the
top layer, located at the origin of the grid shown in Figure 8.5.

In the numerical simulation the load is distributed over the eight
inner elements around the origin, to avoid problems associated
with the singularity of the point source solution, as discussed
in Section 8.2.4, Zero flux is specified along the x—axis, while
a zero concentration 1s prescribed in all other boundaries.
Again, a high decay rate is employed (Table 9.1) to contain the plume
within the grid boundaries.

The steady state analytical solution for a point
source, presented-in Section 5.3, is compared to numerical results
at t=20 sec (which corresponds to steady state up to a distance
of about 1 meter from the origin) in Figures 9.3 and 9.4. Figure
9.3 shows the distribution along the x-axis and a fairly good
agreement is evident, except close to the origin and in particular
within the area of the numerical source., This, of course, is a
consequence of the spatial distribution of the source. The
numerical results for the top layer along the negative x-—axis
are very close to zerc, indicating that even for the unrealistically
high interfacial diffusion assumed in this case, the approximate
analytical Qolution 1s adequate., In Figure 9.4 the concentration
profiles at x=0.22 and at x=0.40 meters are presented. The validity
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of the analytical solution (Equation 5.47) is restricted to values
of y £ 0.13 and y < 0.18 m,, respectively. Within these limits

the agreement with the numerical results is satisfactory.

9.3 Application to the NOMES Experiment

9.3.1 The Experiment

In the context of the three year project NOMES (New England
Offshore Mining Environmental Study) a major field experiment was
carried out by NOAA in the Massachusetts Bay. The objective of
the project was to study the environmental effects of offshore
mining for sand and gravel in the coastal zone due mainly to fines
discharged back into the water body, and an extensive experimental
dredging operation was planned for the summer of 1974. A preliminary
experiment, in June 1973, was aimed at galning field experience
for monitoring the actual mining operation and helping in testing
and improving relevant mathematical models. On the morning of

June 11, 1973, 2000 1bs of small glass beads and 1000 Ibs of

5

fluorescent sphalerite (ZnS) particles (or 2.92 x 10l particles)

were introduced near the water surface, about 8 miles east of Boston
Harbor. The settling property of the tracers was necessary for
simulating the actual dredge spoil and the use of two different
kinds of particles was planned in order to assess the performance

of a variety of measuring devices. The motion of the particles

was tracked for more than a week, by means of samples taken
throughout the water colum and from the bottom. A number of

current meters were installed in several stations in the vicinity
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of the dump site to obtain current information, while some drogues
were deployed simultaneous with the tracers to provide easy
guidance with respect to sampling locations in the course of the
experiment. Details on the instrumentation, the experimental
procedures and data analysis can be found in (88). Difficulties
with the instruments and experimental errors were inevitable in
such a large scale effort. Most unfortunately, the counting of
the glass bead particles was totally wrong and therefore those
data are useless (54). HNevertheless, the sphalerite data are
believed to be of reasonable quality. They compare well with
results of the depth-integrated finite element dispersion model
which preceeded the present two-layer approach ( 65). 1Indeed,
the sphalerite data were used to some extent for "tuning” both
the one layer circulation and dispersion models, primarily with
respect to the ocean boundary condition and the dispersion
coefficient.
The time of the experiment was such that, although some
stratification existed, the thermocline was not as distinct
as it becomes later in the summer. In fact, neither the well-
mixed nor the two-layer assumption seems appropriate in this
case., Nevertheless, the application of the two-layer model is
of considerable interest for providing some idea about its real-
world capabilities and revealing the difficulties and the
sensitivity associated with numerical simulations of real problems.
The finite element grid is shown in Figure 9.5, This
has been used extensively in the past in conjunction with one-layer
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models. The dumping site is denoted by the shaded area and the
current meter stations are indicated by dots. Refinement of the
grid in the vicinity of the source was introduced to minimize the
numerical difficulties associated with large initial concentration

gradients.

9.3.2 The Flow Field

The hydrodynamic model developed by Wang and Conmor {86) was
used to generate two-layer velocity inputs for the dispersion study.
Considerable preliminary effort was required since this was the
firet application to a real coastal water body of variable bathy-
metry and boundary geometry. The model requires both layers to
extend over the whole domain and the depths at nodes near the land
boundary had to be artificially increased to at least 15 meters
in order to avoid intersection of the interface with the bottom.

A major obstacle in ohtaining realistic two-layer results
1s associated with the proper position of the interface, in par-
ticular along the open boundary, where its spatial and temporal
variation must be specified. Information relevant to the thermo-
cline in the Bay is available in terms of a number of transects,
compiled in ( 8)., Vertical temperature and salinity profiles at
certain locations are also available (22,9). Data of both substantial
areal coverage and continuity in time, which are essential to
yvield a detailed enough picture of the interfacial motion, are

lacking at the present time. Existing measurements show
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considerable variation of the thermocline position and a significant
effect of bottom topography. A major feature of the Bay
bathymetry is the presence of Stellwagen Bank in the central-
southern part of its entrance. Early experimental investigations
on a two-layer system (47) have showed that either an internal
hydraulic jump or hydraulic drop may be created on the lee of
an obstacle, depending on its height relative to the layer thick-
nesses and the incoming flow conditions. In most circulation runs
the interface was found to rise over the bank significantly higher
than its specified position at the boundary and then drop further
inside. A drop in the thermocline, possibly associated with
phenomena of frontal nature, has been evidenced in the past
west of the bank during periods of high inflow velocities (28).
The behavior of the interface in the model may be considerably
affected by the specification of the boundary conditions right on
the bank, rather than in deep water outside. The effect of bottom
anomalies is known to be critical for the position of the interface
when wind provides the forcing mechanism, too (32). Specifically
for Massachusetts Bay, the importance of the bottom topography.
in general, and Stellwagen Bank in particular, with respect
to wind driven circulation was discussed in (9).

A preliminary review of the available data for the Bay leads
to the conclusion that the thermocline (or, rather, pyclocline)
depth is typically about 8-10 meters during the period of strongest

stratification., However, it tends to be shallower in early summer.
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For the application of the model a uniform interface depth of 8
meters at low water was selected as initial condition. Along the
ocean boundary in view of lack of data, the interface was assumed
to vary linearly. Two extreme cases were considered: first, the
interface moving at the same amplitude as the free surface and
second, the interface remaining fixed throughout the tidal cycle.
In the former case, the tide may be interpreted as coming through
the bottom layer, while in the latter, as coming through the top
layer,

A constant 10 knot west wind, typical of the period of the
axperiment, was imposed. A simple sinusoidal tide was specified
along the ocean boundary, with amplitude linearly varying from 1.20
meters at the northern end (Cape Ann) to 1,10 meters at the
southern end (Cape Cod). The amplitude was obtained from
tide tables ( 80), as an average value over the durationm of the
experiment. A 10 em "tilt" was employed initially since it was
found optimum for a number of different applications of the one-
layer circulation and dispersion models ( 65 63), yielding
results in reasonable agreement with current meters and tide gauge
data taken at various locations. However, because of changes in
bathymetry, the resulting southward water motion appeared tco strong
and it was decided to experiment with a smaller (approximately
half) tidal tilt at the boundary. Primarily due to lack of data
on the behavior of the interface, the results of the circulation
model should be interpreted as qualitative rather than quantitative.
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At present, one. can only study the sensitivity of the wvelocity
field (and untimately that of the dispersing plumes) to variations
in the imposed boundary conditions and other model parameters.
Studies of this nature should be valuable in establishing the
important quantities that will need to be measured in the field.

The motion of the interface within the Bay depends, in
addition to the topography, on the density difference and the
layer thickness (6). Sensitivity of the results to these factors
was not examined further here, but the importance of the interfacial
friction factor CI was egstablished. This was conveniently set to
zero in both analytical studies and early applications of the
numerical model (86), resulting in considerable oscillations of
the interface and significant velocity differences between the
layers, even several counterflow cases. A realistic value of the
‘interfacial friction coefficient,of the order of 1073 (7 ), moderates
those features but a higher value,of 10_% yields layer velocities
quite close to each other and allows little interfacial motionm.
Conceivably, a very high interfacial friction would essentially
"tie" the two layers together, resulting in a flow pattern similar
to the one-layer case. Table 9.2 summarizes the various runs

carried out in conjunction with the application of the circulation

model .
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Table 9,2

Summary of Circulation Runs for the NOMES Application

Tidal

Tidal

Interfacial

Name |  Auplitude | Amplitude | Friction | , OTheT R;ievint
at Boundary }at Boundary Factor | -eTs | Flgures
FTT 1.20-1.10 m 0 1073 Wind 9.7b
10 knot
FrB | 1.20-1.10 m [1.20-1.10 m 1073 west 9.6, 9.7a
thru 9.12
-3 Eddy
FTH | 1.20-1.10 m |0.60-0.55 m 10 Viscosity B
1000 m2/sec
HTB | 1.20-1.155 m|1.20-1.155 m| 1073 Variable 9. 7¢
Bottom
Friction f—————==
LFT 1.20-1.10 m 0 1072 -
Density
Difference
LFB | 1.20-1.10 m [1.20-1.10 m 1072 1% 9.7d
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The model was run until steady state was reached after 7-8
tidal cycles and the velocity field at that time is used
subsequently for the dispersion calculations. Typical interfacial
motions over the tidal cycle, for rum ETB, at selected grid points,
are shown in Figure 9.6. A comparison of simulated layer—average
velocities at current meter station 5 are presented in Figure 9.7
and one of them is compared to the actual measurements in Figure 9.8.
The general features seem in reasonable agreement, in view of the
uncertainties involved in the application of the model, the use
of constant wind and tide and the non-existence of a strong
thermocline. The effect of interfacial friction in bringing
the layer velocities close together can be clearly seen.

Variation of the specified interface motion at the boundary relative
to the surface is found to affect primarily the east-west component
of the flow, i.e., that not associated with the net drift, as will
be discussed shortly. The effect of the way the tide is specified
to come into the bay becomes really minimal as the interfacial
friction increases and is generally significant only locally near
the boundary.

Typical circulation patterns for run FTB are shown in Figures
6.9 and 9.10, respectively. A quite strong outward flow is evident
at the southern end of the ocean boundary, a consequence of the
large tidal tilt and the wind on the one hand, and the existence of

a rather narrow and deep "channel" on the other. The top layer
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velocity is, in general, larger than the bottom. However, comparison
with similar one-layer circulation plots indicates that the

velocities in the two-layer system are too high, primarily near the
tip of Cape Cod and along the western land boundary. This is probably
due to the artificial deepening‘of the Bay in those areas; as men-
tioned earlier.

Ap important feature of the circulation pattern as a whole is
the trace of a water "particle". Particle paths can be easily
computed by interpolation in space and time between the layer-—
average velocities given the grid points of the finite element
model. Some representative paths, for a period of 7 days,
originating near the dumping site, are presented in Figure 9.11.
All particles in the top layer ekhibit a rapid southeasterly motion
in crossing the Bay. The one closest to land eventually slows down
as it enters Cape Cod Bay. The other two turn to the east, as
they approach the zone of high outwards velocity, and are rapidly
driven out of the domain, Thus, the eventual terminal position
appears to be quite sensitive to relatively small variation in the
starting positions, provided they lie in the area examined. By
contrast, the effect of the precise time of release within the
tidal cycle is found to be of minor importance. TIwo "particles"
were started from each location, one at low water and the other
at ebb tide. As seen in the figure , the paths of each pair are

essentially the same.

-256-



————4} Top Layer

0.5 ™/ sec

——p> Bottom Laver

Figure 9.9 Flow Fleld at Flood Tide for FTB Run
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To compensate for the artificial deepening of the Bay and
the resulting high velocities along the western land boundary -
where the highest tracer concentrations are indicated by both
experimental and one-layer model results -~ a smaller tidal tilt
was tried (Run HTB). Circulation plots for this case at flood
and ebb tide, shown in Figures 9.12 and 9.13, exhibit smaller vel-
ocities both along the western bank and near the tip of Cape Cod.
Particle paths,initiated at the same positions as before,are seen
to move slower (Figure 9.14), although in the same direction,
in general; in particular the net drift inm the lower layer seems
to be almost half its previous magnitude.

With respect to the comparison of the various runs to actual
data in Station 5, the natural variability of the measurements is
such that no conclusion can be drawn as to which one yields better
agreement. Undoubtedly, an extensive undertaking is needed for a
conclusive verification of the circulation model, including some
carefully planned field measurements. The issue of circulation
verification can no longer be pursued in the present work.

Rather, two flow fields, corresponding to Runs FTB and HIB, are
used as inputs to the dispersion model in an attempt to assess its

sensitivity, as wlll be seen in the following section.

9.3.3 Dispersion Results

The experimental data were presented in (54 ) in terms of

lines of equal particle counts (particles/lt) at several depths.
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Figure 9.12 Flow Field at Floed Tide for HIB Run
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Figure 9.13 Flow Field at Ebb Tide for HTB Run
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These plots are shown here as Figures 9.15 through 9.17, representing
the results for 2, 3, and 7 days after the introduction of the
particles took place. During the early days the data were taken by
boat and therefore the area that could be covered is limited. By
the seventh day the particles had spread so much that beat sampling
would have been meaningless. Thus, Figure 9.17 shows surface
measurements, taken from a helicopter. Although monitoring of the
particles continued for a few more days, their concentrations had
dropped to ambient levels so that results after the seventh day are
not too reliable, The data show a general southeast drift of the
plume, with the peak values remaining rather close to the shoreline.
* In the first days, higher concentrations are found near the surface.
Later, the particles move to lower levels as settling proceeds. The
shape of the plume, as can be judged from the limited available
measurements, is highly irregular and variable over the depth.
Further, it seems to have broken into two or three different parts
by the end of the experiment.

These detalls cannot be reproduced by deterministic modeling,
which yields continucus variation of concentrations. In the
numerical simulations the load was introduced at the four corners
of the shaded area of Figure 9.5 over one time step. This represents
an initial spreading of the source and underestimation of peaks should
be anticipated for short times after the injection. All the

material was considered to consist of a single representative grain
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size of 5 microns. According to Stoke's law the settling velocity
of such a particle is 3.3 x 10_5 n/sec, assuming no interaction
(eg. flocculation, etc.) between the particles. This settling
rate over a layer of about 8 meters thickness is equivalent to a
decay rate of about 4 x 10—6 sec.hl. A constant interfacial mixing
coefficlent of 10_5 m/sec was used, corresponding to a (rather low)
Richardson number of the order of 10. Alsc, a constant isotropic
dispersion coefficient of 30 m2/sec, found to yield good results
in previous studies (65,63),was employed. Velocity fields from
runs FTB and HTB were used as inputs to the dispersion medel. The
highest velocities at the area around the location of the source,
where the grid is finest (As = 2.8 km), are about 10-15 cm/sec.
Employing these values, as well as those of the other parameters
defined above, condition (8.80) yields a bound on the time step of
about 2500 to 3000 sec. The actual time step chosen was 1500 sec,
for better accuracy in the representation of the velocity variabil-
ity.

Using velocity input corresponding to the large tidal tilt
(FTB) proved to yield results extremely sensitive to the precise
tidal time of particle injection. While the actual dumping took
place around ebb tide, some time has to be allowed for the cloud
to reach a size comparable to that of the numerical source.
Figures 9.18 through 9.20 show simulation results (in particles/lt)

for a release at low water. Except for the exaggerated speed of
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motion southward and out of the domain, these are in reasonable
agreement with the field measurements and also the one-layer
results (65 . However, slight variations in the time of release
drastically change the picture. In particular, when the injection
is made at ebb tide, the resulting cloud moves in the center of
the Bay and rapidly disappears into the ocean. This uanatural
gsensitivity of the model can be explained based on the particle
paths shown in the previous section (Figure 9.11). Apparently,
if the particles are introduced close to ebb tide, the bulk of
the plume gets carried enough eastward, due to the high velocities,
so that it starts following the course of the paths that lead
quickly out of the Bay.

Using the velocities obtained with the smaller tilt at the
boundary (HTB), yields significantly different results.
Figures (9.21) through (9.23) show plots corresponding to a
release at low water. Comparing with analegous results assoclated
with the previous flow field, the most striking difference is that
now the plume reaches the boundary more to the north and its peak
never approaches Plymouth. However, this contradicts the field
data and consequently, at least in that respect, the stronger
flow field is to be preferred. Figures (9.24) through (9.26)
show simulation results for a release at ebb tide. Comparison with
the previous set of plots again indicates comsiderable sensitivity
of the plume motion to the time of introduction, but not as

significant as found with the FTB circulation field. This is
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certainly a factor in favor of the present velocity input.

The boundary condition used in all runs of the dispersion
model consisted of specifying zero concentration along the northern
pért of the ocean boundary and zero gradient aleng the southern
part, where the velocity is predominantly outwards, as discussed
in Section 2.3. The early arrival of appreciable concentrations
at the boundary, due to the unrealistically strong flow field, may
lead to inaccuracies and therefore the results near the boundary

must be viewed as a crude approximation at best.

9.4 Application to the MIT Experiment

2.4.1 The Experiment

In conjunction with recent studies made by the R.M. Parsons
Lab. of MIT (63 ) and sponsored by Boston Edison Co., of the
far field effects of the Pilgrim Nuclear Power Station (PNPS),
a dispersion experiment was carried out in August 1975. The power
plant is located at Rocky Pt., scuth of Plymouth on the Massachusetts
coast (Figure 9.27) and the experiment was intended to be, to some
extent, site-specific in order to provide information relevant to
plant discharges. However, the experimental results should be of
more general value in assessing the circulation and dispersion
characteristics of the adjacent water body.

The timing of the experiment, in late August, was planned
so that the results could be used in connection with the two-layer

numerical models. Based on previous experience with dispersion
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material, it was decided to use fluorescent sphalerite particles

as a tracer. On the morning of August 17, 1975, 500 pounds of
these particles were introduced gradually into the water over a
period of about one hour, around high tide. Their motion was
subsequently monitored for 5 days by boat and by helicopter.
Samples were taken from the surface as well as 5, 10, 15, 20 and

25 meters depth. In addition, temperature and conductivity profiles
over the depth were scheduled, but very limited data were obtained
due to instrument malfunction. Two current meter stations had been
installed prior to the experiment at locations shown in Figure

9.27 by dots. Details of the experimental procedures and data

analysis, which has been recently completed, are given in (63).

9.4.2 The Flow Field

Two sets of velocities obtained from the circulation model
and corresponding to large and small tidal tilt along the boundary
were used. Since the tide was slightly higher than in the NOMES
experiment, the specified amplitudes were 1.22 to 1.13 meters and
1.22 to 1.175 meters, respectively. A variable wind routine was
also implemented and actual time-varying wind data were used in
the computations. The remaining variables, such as the interfacial
friction and the depth of the interface, were assigned the same val-
ues as in the previous application. At the boundary, the
interface was given the same motion as the free surface, i,e.,

the tide is considered to come through the bottom layer.
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Comparison of the predicted currents, under the small tidal
tilt, to measurements at St. BE is shown in Figure 9.28. The
agreement is reasonable, especially for the lower layer, while
the predicted top-layer direction differs significantly at times
from the measured surface value, the latter being strongly dependent

on the wind.

9.4.3 Dispersion Results

The experimental results were reduced to 'layer-average'
concentrations. At each location, samples above and below the
thermocline were averaged together to yleld a single representative
value for each layer. The resulting plots, in particles/lt, are
shown in Figures 9.29, 9.30 and 9.31 corresponding to 1, 2 and 3
days after the dumping took place. During the fourth day nc
measurements were taken, while the data of the fifth day are too
inconclusive - and generally low - to draw isoconcentration lines
with any confidence. By that time, the plume had spread con-
siderably to the east in comparison to earlier days, a result of
a change in wind to southwest, extending probably over a large
portion of Cape Cod Bay which could not be covered by the sampling
means available. The plots of the first three days show the
plume moving slowly to the southeast, approximately parallel to
the shore. Initially the top layer has higher concentrations, as
the particles were introduced a little below the surface, but

later higher values occur in the bottom layer due to settling.
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In the dispersion simulations the shaded triangle was loaded
over a period of three timesteps. The area of the triangle is
quite large in comparison to the actual source and as a consequence,
one should expect unrealistically large plume areas for short times.
In fact, the finite element grid is quite coarse in the vicinity
of PNPS, simply because it had not been designed to handle a
source in that area. A much finer grid has been employed earlier
in connection with the one-layer models to study circulation and
dispersion problems in the Plymouth area, including the harbor,
and may be used in the future for the two-layer models as well.

At this time, the requirement that all depths be at least about 15
meters makes use of that grid meaningless.

The values of the dispersion coefficient and the interfacial
mixing rate were set, as in the previous application, at 30 mzlsec
and 10_5 m/sec, respectively. An average particle size of 7
microns was selected as representative, following the particle
distribution provided by the manufacturer. Consequently a
settling velocity of 7.3 x 10-5 m/sec was used in the computations.
As in the previous application, various starting times of the simula-
tion were tried. The results for the velocity field obtained under
the large tidal tilt at the boundary showed again considerable
sensitivity to starting times. When the release was made close
to or before high water, the plume was seen to more rapidly south-
ward close to the shore as a narrow zone; for a release after high
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water the plume moved to the south more slowly and at the same
time extended to the east. Taklng into account our initial
spreading of the source,this second starting time is more
reasonable. 'The model results for this case are shown in Figures
9.32, 9.33 and 9.34. 1In addition to reasonable agreement in the
location of the plume, good quantitative agreement of the peak
values is observed.

Using the velocity field obtained under smaller tidal tilt
at the boundary, hardly any southward movement of the plume center
to the south is found. As Figures 9.36, 9.36 and 9.37 show , the
plume is now more extended along the shore and appreciable
concentrations occur towards Plymouth Bay. The peak values appear
in satisfactory agreement with the data, although the dimensions
of the plume are clearly overestimated, due to the initial spatial

distribution of the source.

9.5 Discussion of the Results

The verification studies presented in the first part of this
chapter show that the numerical model is capable of describing
well the dispersion phenomenon in a two-layer system, as it is
intended to. The main difficulty in its application to real world
problems seems to be the lack of reliable velocity inputs. In
the particular cases studied in the Massachusetts Bay, the primary
obstacles are associated with the behavior of the interface at the
boundary and the use of distorted topography in shallow areas.
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Detailed measurements should resolve-the former problem, however
~an improved version of the circulation model, handling vanishing
layers, etc., is needed to overcome the latter. The great sen—
sitivity of the dispersion results to the velocity input, observed
in the previous sections, is a factor emphasizing the need for a
reliable velocity fileld.

In the case of Massachusetts Bay, the large tidal tilt,
along with the deepening of nearshore areas, produced an ekaggerated
southward drift parallel to the coast, a strong counterclockwise
gyre in the Cape Cod Bay and outward flow over the tip of the Cape.
Although all these features do exist in weaker form, as
avidenced from both measurements and one-layer model simulations,
the strong velocity field causes the dispersing particles to move
too fast in comparison to the actual data. It is worth noticing,
however, that the location of the plumes after several days is not
unreasonable and, in fact, better than that obtained under a smaller
tidal tilt. In that case the southward motion is less pronounced
and the plumes eventually end up more to the north than they should.
The small net motion of the plume centers in the MIT experiment,
both in nature and in simulations, is explained by the presence at
the area of the source, of a ''separation” region with very weak
tidal velocities, as discussed in {(63) and seen in the velocity
plots of Section 9.3.3.
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Another important feature of the application runs was the
high sensitivity of the results to the precise tidal time of
introduction of the material. This should be at least partly due
to the unrealistically high velocities used, causing large tidal
excursion of the pafticle center of mass. It 1is concelvable that
the motion of an effluent in nature iz indeed to some extent
dependent on the time of injection; and this notion is being used
in planning the discharges éf sewage outfalls and other pollutants
into the coastal waters. In view of the above amd the spatial
distribution of the source for purpcses of the computation, it
seems important that a preliminary calculation is made to evaluate
the time necessary for a source of the actual size to reach its
numerical size. |

The value of the dispersion coefficient used in the applica-
tions gave reasonable results with respect to the quantitative
features of the distributions, taking into account. the initial
source spreading. Nevertheless, it is low with reapect to the
criteria discussed in Section 8.2.4. As a consequence, appreciable
negative values do appear in the fringes of the plume,and further
spatial oscillations which die off rapidly. This is certainly an
undesirable effect and it could be remedied by arbitrarily increasing
the dispersion coefficient in cases where the sclution is net sen-
sitive to its value (see Chap. 6). In problems where this 1s not

the case, such as the almost instantanecus sources used in the
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applications, attention should be confined to the central part
of the plume. This is not affected by the presence of negatives
and should still contain quite good results.

Finally, some comments on the role of interfacial transport
are apﬁropriate. In the verification studies the interface was seen
to represent a barrier difficult to penetrate even with un-—
realistically high values of the interfacial mixing rate. The
picture was different in the applications because of the presence
of settling on the one hand and the large time scale on the other.
The velocities in the two layers were not much different and
consequently the location of the plumes in the two layers was
similar. However, the progressive relative increase of the lower
layer concentrations with respect to those of the top was evident
in all runs. Thus, in the case of settling particles, the two-
layer approach is useful in providing more detail about the ver-

tical distribution of the material as time proceeds.
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CHAPTER 10

CONCLUSIONS

The objective of this study was to investigate the problem
of dispersion in ceoastal or inland water bodies under conditions
of strong stratification., The two-layer idealization was adopted
as a useful extreme case and, at the same time, the easiest to
handle mathematically. Primary emphasis was placed first on
analyzing the physical mechanisms associated with the dispersion
phenomenon in such a system and second on establishing the
numerical requirements for its effective simulation by the finite
element method.

Rational quantitative expressions for the dispersion
coefficients and the interfacial transport in terms of the mean
flow characteristics, which are necessary for engineering applica-
tions, were proposed. Moreover, the sensitivity of the results
to variations in these and other parameters was evaluvated mainly
through examination of analytical solutions derived under simple
flow conditions. With respect to the numerical aspects of the
problem, use of the trapezoidal integration rule yielded the
initial value problem unconditionally stable for an arbitrary grid.
The limitation imposed by the iteration procedure, employed for
economical handling of time variability, was investigated
theoretically and a simple quantitative expression for selecting

the time step was developed and verified by numerical experimentation.
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The accuracy characteristics of the scheme, particularly in
connection with the finite element spatial discretization, were
also analyzed and quantified.

Verification studies showed that the numerical model
adequately predicts the phenomena i1t is intended to. ‘Its po-
tential and limitations relative to real world problems was
evaluated through applications to field experiments in the
Massachusetts Bay. The ability of the two-layer treatment to
handle transport between the layers is important, whether or not
the constituent of interest has some vertical mobility, in
providing a refined picture of its distribution over the depth.
A further advantage of the two-layer formulation evident from
both ideal and real applications, lies in the more detailled
description of the velocity field. However, the semsitivity of
the results to variations in the flow field points out the
necessity for using realistic current input.

In order to improve the applicability of the model to
natural water bodies some extensions, such as treatment of
vanishing bottom layers, will have to be incorporated. But more
importantly, a reliable circulation field 1is essential; This
will require extensive field monitoring programs for obtaining
information primarily on the behavior of the interface along the
open boundary of the domain under consideration. Development of
numerical techniques has outgrown our present ability to define

realistic inputs and also our basic knowledge of turbulent mixing
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processes in stratified environments. Unless the physical processes
are fully understoed, their proper modeling cannot be complete.
Therefore, more fundamental research is needed in this area.

In view of the above,implementation of more elaborate and
expensive multi-laver or three-dimensional models does not seem
warranted at this time. It is believed that the present two-layer
model, providing an extreme-case picture of the response of the
physical gsystem under summer conditions, can be a useful tool in
coastal dispersion studies. TFurthermore, the discussion of the
basic physical processes and the requirements of the finite
element solution should be wvaluable in multi-layer extensions,

as well as other related problems.
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